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2.1 Fundamental Principles

Structural analysis is the determination of forces and deformations of the structure due to applied
loads. Structural design involves the arrangement and proportioning of structures and their compo-
nents in such a way that the assembled structure is capable of supporting the designed loads within
the allowable limit states. An analytical model is an idealization of the actual structure. The structural
model should relate the actual behavior to material properties, structural details, and loading and
boundary conditions as accurately as is practicable.

All structures that occur in practice are three-dimensional. For building structures that have
regular layout and are rectangular in shape, it is possible to idealize them into two-dimensional
frames arranged in orthogonal directions. Joints in a structure are those points where two or more
members are connected. A truss is a structural system consisting of members that are designed to
resist only axial forces. Axially loaded members are assumed to be pin-connected at their ends. A
structural system in which joints are capable of transferring end moments is called a frame. Members
in this system are assumed to be capable of resisting bending moment axial force and shear force. A
structure is said to be two dimensional or planar if all the members lie in the same plane. Beams
are those members that are subjected to bending or flexure. They are usually thought of as being
in horizontal positions and loaded with vertical loads. Ties are members that are subjected to axial
tension only, while struts (columns or posts) are members subjected to axial compression only.
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2.1.1 Boundary Conditions

A hinge represents a pin connection to a structural assembly and it does not allow translational
movements (Figure 2.1a). It is assumed to be frictionless and to allow rotation of a member with

FIGURE 2.1: Various boundary conditions.

respect to the others. A roller represents a kind of support that permits the attached structural part
to rotate freely with respect to the foundation and to translate freely in the direction parallel to the
foundation surface (Figure 2.1b) No translational movement in any other direction is allowed. A
fixed support (Figure 2.1c) does not allow rotation or translation in any direction. A rotational spring
represents a support that provides some rotational restraint but does not provide any translational
restraint (Figure 2.1d). A translational spring can provide partial restraints along the direction of
deformation (Figure 2.1e).

2.1.2 Loads and Reactions

Loads may be broadly classified as permanent loads that are of constant magnitude and remain in
one position and variable loads that may change in position and magnitude. Permanent loads are
also referred to as dead loads which may include the self weight of the structure and other loads
such as walls, floors, roof, plumbing, and fixtures that are permanently attached to the structure.
Variable loads are commonly referred to as live or imposed loads which may include those caused by
construction operations, wind, rain, earthquakes, snow, blasts, and temperature changes in addition
to those that are movable, such as furniture and warehouse materials.

Ponding load is due to water or snow on a flat roof which accumulates faster than it runs off. Wind
loads act as pressures on windward surfaces and pressures or suctions on leeward surfaces. Impact
loads are caused by suddenly applied loads or by the vibration of moving or movable loads. They
are usually taken as a fraction of the live loads. Earthquake loads are those forces caused by the
acceleration of the ground surface during an earthquake.

A structure that is initially at rest and remains at rest when acted upon by applied loads is said to
be in a state of equilibrium. The resultant of the external loads on the body and the supporting forces
or reactions is zero. If a structure or part thereof is to be in equilibrium under the action of a system
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of loads, it must satisfy the six static equilibrium equations, such as∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0∑

Mx = 0,
∑
My = 0,

∑
Mz = 0 (2.1)

The summation in these equations is for all the components of the forces (F ) and of the moments
(M) about each of the three axes x, y, and z. If a structure is subjected to forces that lie in one plane,
say x-y, the above equations are reduced to:∑

Fx = 0,
∑

Fy = 0,
∑

Mz = 0 (2.2)

Consider, for example, a beam shown in Figure 2.2a under the action of the loads shown. The

FIGURE 2.2: Beam in equilibrium.

reaction at support B must act perpendicular to the surface on which the rollers are constrained to
roll upon. The support reactions and the applied loads, which are resolved in vertical and horizontal
directions, are shown in Figure 2.2b.

From geometry, it can be calculated that By = √
3Bx . Equation 2.2 can be used to determine the

magnitude of the support reactions. Taking moment about B gives

10Ay − 346.4x5 = 0

from which
Ay = 173.2 kN.

Equating the sum of vertical forces,
∑
Fy to zero gives

173.2 + By − 346.4 = 0

and, hence, we get
By = 173.2 kN.

Therefore,
Bx = By/

√
3 = 100 kN.

c©1999 by CRC Press LLC



Equilibrium in the horizontal direction,
∑
Fx = 0 gives,

Ax − 200− 100= 0

and, hence,
Ax = 300 kN.

There are three unknown reaction components at a fixed end, two at a hinge, and one at a roller.
If, for a particular structure, the total number of unknown reaction components equals the number
of equations available, the unknowns may be calculated from the equilibrium equations, and the
structure is then said to be statically determinate externally. Should the number of unknowns be
greater than the number of equations available, the structure is statically indeterminate externally; if
less, it is unstable externally. The ability of a structure to support adequately the loads applied to it
is dependent not only on the number of reaction components but also on the arrangement of those
components. It is possible for a structure to have as many or more reaction components than there
are equations available and yet be unstable. This condition is referred to as geometric instability.

2.1.3 Principle of Superposition

The principle states that if the structural behavior is linearly elastic, the forces acting on a structure
may be separated or divided into any convenient fashion and the structure analyzed for the separate
cases. Then the final results can be obtained by adding up the individual results. This is applicable
to the computation of structural responses such as moment, shear, deflection, etc.

However, there are two situations where the principle of superposition cannot be applied. The
first case is associated with instances where the geometry of the structure is appreciably altered under
load. The second case is in situations where the structure is composed of a material in which the
stress is not linearly related to the strain.

2.1.4 Idealized Models

Any complex structure can be considered to be built up of simpler components called members or
elements. Engineering judgement must be used to define an idealized structure such that it represents
the actual structural behavior as accurately as is practically possible.

Structures can be broadly classified into three categories:

1. Skeletal structures consist of line elements such as a bar, beam, or column for which the
length is much larger than the breadth and depth. A variety of skeletal structures can be
obtained by connecting line elements together using hinged, rigid, or semi-rigid joints.
Depending on whether the axes of these members lie in one plane or in different planes,
these structures are termed as plane structures or spatial structures. The line elements in
these structures under load may be subjected to one type of force such as axial force or
a combination of forces such as shear, moment, torsion, and axial force. In the first case
the structures are referred to as the truss-type and in the latter as frame-type.

2. Plated structures consist of elements that have length and breadth of the same order but
are much larger than the thickness. These elements may be plane or curved in plane, in
which case they are called plates or shells, respectively. These elements are generally used
in combination with beams and bars. Reinforced concrete slabs supported on beams,
box-girders, plate-girders, cylindrical shells, or water tanks are typical examples of plate
and shell structures.

3. Three-dimensional solid structures have all three dimensions, namely, length, breadth,
and depth, of the same order. Thick-walled hollow spheres, massive raft foundation, and
dams are typical examples of solid structures.
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Recent advancement in finite element methods of structural analysis and the advent of more
powerful computers have enabled the economic analysis of skeletal, plated, and solid structures.

2.2 Flexural Members

One of the most common structural elements is a beam; it bends when subjected to loads acting
transversely to its centroidal axis or sometimes by loads acting both transversely and parallel to this
axis. The discussions given in the following subsections are limited to straight beams in which the
centroidal axis is a straight line with shear center coinciding with the centroid of the cross-section. It
is also assumed that all the loads and reactions lie in a simple plane that also contains the centroidal
axis of the flexural member and the principal axis of every cross-section. If these conditions are
satisfied, the beam will simply bend in the plane of loading without twisting.

2.2.1 Axial Force, Shear Force, and Bending Moment

Axial force at any transverse cross-section of a straight beam is the algebraic sum of the components
acting parallel to the axis of the beam of all loads and reactions applied to the portion of the beam
on either side of that cross-section. Shear force at any transverse cross-section of a straight beam is
the algebraic sum of the components acting transverse to the axis of the beam of all the loads and
reactions applied to the portion of the beam on either side of the cross-section. Bending moment at
any transverse cross-section of a straight beam is the algebraic sum of the moments, taken about an
axis passing through the centroid of the cross-section. The axis about which the moments are taken
is, of course, normal to the plane of loading.

2.2.2 Relation Between Load, Shear, and Bending Moment

When a beam is subjected to transverse loads, there exist certain relationships between load, shear,
and bending moment. Let us consider, for example, the beam shown in Figure 2.3 subjected to some
arbitrary loading, p.

FIGURE 2.3: A beam under arbitrary loading.

Let S and M be the shear and bending moment, respectively, for any point ‘m’ at a distance x,
which is measured from A, being positive when measured to the right. Corresponding values of
shear and bending moment at point ‘n’ at a differential distance dx to the right ofm are S + dS and
M + dM , respectively. It can be shown, neglecting the second order quantities, that

p = dS

dx
(2.3)
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and

S = dM

dx
(2.4)

Equation 2.3 shows that the rate of change of shear at any point is equal to the intensity of load
applied to the beam at that point. Therefore, the difference in shear at two cross-sections C and D is

SD − SC =
∫ xD

xC

pdx (2.5)

We can write in the same way for moment as

MD −MC =
∫ xD

xC

Sdx (2.6)

2.2.3 Shear and Bending Moment Diagrams

Inorder toplot the shear forceandbendingmomentdiagrams it isnecessary toadopta signconvention
for these responses. A shear force is considered to be positive if it produces a clockwise moment about
a point in the free body on which it acts. A negative shear force produces a counterclockwise moment
about the point. The bending moment is taken as positive if it causes compression in the upper
fibers of the beam and tension in the lower fiber. In other words, sagging moment is positive and
hogging moment is negative. The construction of these diagrams is explained with an example given
in Figure 2.4.

FIGURE 2.4: Bending moment and shear force diagrams.

The section at E of the beam is in equilibrium under the action of applied loads and internal forces
acting at E as shown in Figure 2.5. There must be an internal vertical force and internal bending
moment to maintain equilibrium at Section E. The vertical force or the moment can be obtained as
the algebraic sum of all forces or the algebraic sum of the moment of all forces that lie on either side
of Section E.
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FIGURE 2.5: Internal forces.

The shear on a cross-section an infinitesimal distance to the right of point A is +55k and, therefore,
the shear diagram rises abruptly from 0 to +55 at this point. In the portion AC, since there is no
additional load, the shear remains+55on any cross-section throughout this interval, and the diagram
is a horizontal as shown in Figure 2.4. An infinitesimal distance to the left of C the shear is +55, but
an infinitesimal distance to the right of this point the 30 k load has caused the shear to be reduced
to +25. Therefore, at point C there is an abrupt change in the shear force from +55 to +25. In the
same manner, the shear force diagram for the portion CD of the beam remains a rectangle. In the
portionDE, the shear on any cross-section a distance x from point D is

S = 55− 30− 4x = 25− 4x

which indicates that the shear diagram in this portion is a straight line decreasing from an ordinate
of +25at D to +1 at E. The remainder of the shear force diagram can easily be verified in the same
way. It should be noted that, in effect, a concentrated load is assumed to be applied at a point and,
hence, at such a point the ordinate to the shear diagram changes abruptly by an amount equal to the
load.

In the portion AC, the bending moment at a cross-section a distance x from point A isM = 55x.
Therefore, the bending moment diagram starts at 0 at A and increases along a straight line to an
ordinate of +165k-ft at point C. In the portion CD, the bending moment at any point a distance x
from C isM = 55(x + 3)− 30x. Hence, the bending moment diagram in this portion is a straight
line increasing from 165 at C to 265 at D. In the portion DE, the bending moment at any point a
distance x from D isM = 55(x + 7)− 30(X + 4)− 4x2/2. Hence, the bending moment diagram
in this portion is a curve with an ordinate of 265 at D and 343 at E. In an analogous manner, the
remainder of the bending moment diagram can be easily constructed.

Bending moment and shear force diagrams for beams with simple boundary conditions and subject
to some simple loading are given in Figure 2.6.

2.2.4 Fix-Ended Beams

When the ends of a beam are held so firmly that they are not free to rotate under the action of applied
loads, the beam is known as a built-in or fix-ended beam and it is statically indeterminate. The
bending moment diagram for such a beam can be considered to consist of two parts, namely the free
bending moment diagram obtained by treating the beam as if the ends are simply supported and the
fixing moment diagram resulting from the restraints imposed at the ends of the beam. The solution
of a fixed beam is greatly simplified by considering Mohr’s principles which state that:

1. the area of the fixing bending moment diagram is equal to that of the free bending moment
diagram

2. the centers of gravity of the two diagrams lie in the same vertical line, i.e., are equidistant
from a given end of the beam

The construction of bending moment diagram for a fixed beam is explained with an example
shown in Figure 2.7. P Q U T is the free bending moment diagram, Ms , and P Q R S is the fixing
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FIGURE 2.6: Shear force and bending moment diagrams for beams with simple boundary conditions
subjected to selected loading cases.
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FIGURE 2.6: (Continued) Shear force and bending moment diagrams for beams with simple bound-
ary conditions subjected to selected loading cases.
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FIGURE 2.6: (Continued) Shear force and bending moment diagrams for beams with simple bound-
ary conditions subjected to selected loading cases.
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FIGURE 2.7: Fixed-ended beam.

moment diagram,Mi . The net bending moment diagram,M , is shown shaded. If As is the area of
the free bending moment diagram andAi the area of the fixing moment diagram, then from the first
Mohr’s principle we have As = Ai and

1

2
× Wab

L
× L = 1

2
(MA +MB)× L

MA +MB = Wab

L
(2.7)

From the second principle, equating the moment about A of As and Ai , we have,

MA + 2MB = Wab

L3

(
2a2 + 3ab + b2

)
(2.8)

Solving Equations 2.7 and 2.8 forMA andMB , we get

MA = Wab2

L2

MB = Wa2b

L2

Shear force can be determined once the bending moment is known. The shear force at the ends of
the beam, i.e., at A and B are

SA = MA −MB

L
+ Wb

L

SB = MB −MA

L
+ Wa

L

Bending moment and shear force diagrams for some typical loading cases are shown in Figure 2.8.

2.2.5 Continuous Beams

Continuous beams, like fix-ended beams, are statically indeterminate. Bending moments in these
beams are functions of the geometry, moments of inertia and modulus of elasticity of individual
members besides the load and span. They may be determined by Clapeyron’s Theorem of three
moments, moment distribution method, or slope deflection method.
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FIGURE 2.8: Shear force and bending moment diagrams for built-up beams subjected to typical
loading cases.
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FIGURE 2.8: (Continued) Shear force and bending moment diagrams for built-up beams subjected
to typical loading cases.

An example of a two-span continuous beam is solved by Clapeyron’s Theorem of three moments.
The theorem is applied to two adjacent spans at a time and the resulting equations in terms of
unknown support moments are solved. The theorem states that

MAL1 + 2MB(L1 + L2)+MCL2 = 6

(
A1x1

L1
+ A2x2

L2

)
(2.9)

in whichMA,MB , andMC are the hogging moment at the supports A, B, and C, respectively, of two
adjacent spans of lengthL1 andL2 (Figure 2.9);A1 andA2 are the area of bending moment diagrams
produced by the vertical loads on the simple spans AB and BC, respectively; x1 is the centroid of A1
from A, and x2 is the distance of the centroid of A2 from C. If the beam section is constant within a

FIGURE 2.9: Continuous beams.
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span but remains different for each of the spans, Equation 2.9 can be written as

MA

L1

I1
+ 2MB

(
L1

I1
+ L2

I2

)
+MC

L2

I2
= 6

(
A1x1

L1I1
+ A2x2

L2I2

)
(2.10)

in which I1 and I2 are the moments of inertia of beam section in span L1 and L2, respectively.

EXAMPLE 2.1:

The example in Figure 2.10 shows the application of this theorem. For spans AC and BC

FIGURE 2.10: Example—continuous beam.

MA × 10+ 2MC(10+ 10)+MB × 10

= 6

[
1
2 × 500× 10× 5

10
+

2
3 × 250× 10× 5

10

]

Since the support at A is simply supported,MA = 0. Therefore,

4MC +MB = 1250 (2.11)

Considering an imaginary span BD on the right side of B, and applying the theorem for spans CB
and BD

MC × 10+ 2MB(10)+MD × 10 = 6 × (2/3)×10×5
10 × 2

MC + 2MB = 500 (because MC = MD ) (2.12)

Solving Equations 2.11 and 2.12 we get

MB = 107.2 kNm

MC = 285.7 kNm
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Shear force at A is

SA = MA −MC

L
+ 100= −28.6 + 100= 71.4 kN

Shear force at C is

SC =
(
MC −MA

L
+ 100

)
+
(
MC −MB

L
+ 100

)
= (28.6 + 100)+ (17.9 + 100) = 246.5 kN

Shear force at B is

SB =
(
MB −MC

L
+ 100

)
= −17.9 + 100= 82.1 kN

The bending moment and shear force diagrams are shown in Figure 2.10.

2.2.6 Beam Deflection

Thereare severalmethods fordeterminingbeamdeflections: (1)moment-areamethod, (2)conjugate-
beam method, (3) virtual work, and (4) Castigliano’s second theorem, among others.

The elastic curve of a member is the shape the neutral axis takes when the member deflects under
load. The inverse of the radius of curvature at any point of this curve is obtained as

1

R
= M

EI
(2.13)

in whichM is the bending moment at the point and EI is the flexural rigidity of the beam section.

Since the deflection is small, 1
R

is approximately taken as d2y

dx2 , and Equation 2.13 may be rewritten
as:

M = EI
d2y

dx2
(2.14)

In Equation 2.14, y is the deflection of the beam at distance x measured from the origin of
coordinate. The change in slope in a distance dx can be expressed asMdx/EI and hence the slope
in a beam is obtained as

θB − θA =
∫ B

A

M

EI
dx (2.15)

Equation 2.15 may be stated as the change in slope between the tangents to the elastic curve at two
points is equal to the area of theM/EI diagram between the two points.

Once the change in slope between tangents to the elastic curve is determined, the deflection can
be obtained by integrating further the slope equation. In a distance dx the neutral axis changes in
direction by an amount dθ . The deflection of one point on the beam with respect to the tangent at
another point due to this angle change is equal to dδ = xdθ , where x is the distance from the point
at which deflection is desired to the particular differential distance.

To determine the total deflection from the tangent at one point A to the tangent at another point
B on the beam, it is necessary to obtain a summation of the products of each dθ angle (from A to B)
times the distance to the point where deflection is desired, or

δB − δA =
∫ B

A

Mx dx

EI
(2.16)

The deflection of a tangent to the elastic curve of a beam with respect to a tangent at another point
is equal to the moment of M/EI diagram between the two points, taken about the point at which
deflection is desired.
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Moment Area Method

Moment area method is most conveniently used for determining slopes and deflections for
beams in which the direction of the tangent to the elastic curve at one or more points is known,
such as cantilever beams, where the tangent at the fixed end does not change in slope. The method
is applied easily to beams loaded with concentrated loads because the moment diagrams consist
of straight lines. These diagrams can be broken down into single triangles and rectangles. Beams
supporting uniform loads or uniformly varying loads may be handled by integration. Properties of
some of the shapes of M

EI
diagrams designers usually come across are given in Figure 2.11.

FIGURE 2.11: TypicalM/EI diagram.

It should be understood that the slopes and deflections that are obtained using the moment area
theorems are with respect to tangents to the elastic curve at the points being considered. The theorems
do not directly give the slope or deflection at a point in the beam as compared to the horizontal axis
(except in one or two special cases); they give the change in slope of the elastic curve from one
point to another or the deflection of the tangent at one point with respect to the tangent at another
point. There are some special cases in which beams are subjected to several concentrated loads or
the combined action of concentrated and uniformly distributed loads. In such cases it is advisable
to separate the concentrated loads and uniformly distributed loads and the moment area method
can be applied separately to each of these loads. The final responses are obtained by the principle of
superposition.

For example, consider a simply supported beam subjected to uniformly distributed loadq as shown
in Figure 2.12. The tangent to the elastic curve at each end of the beam is inclined. The deflection δ1
of the tangent at the left end from the tangent at the right end is found as ql4/24EI . The distance
from the original chord between the supports and the tangent at right end, δ2, can be computed as
ql4/48EI . The deflection of a tangent at the center from a tangent at right end, δ3, is determined in

this step as ql4

128EI . The difference between δ2 and δ3 gives the centerline deflection as 5
384

ql4

EI
.
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FIGURE 2.12: Deflection-simply supported beam under UDL.

2.2.7 Curved Flexural Members

The flexural formula is based on the assumption that the beam to which bending moment is applied is
initially straight. Many members, however, are curved before a bending moment is applied to them.
Such members are called curved beams. It is important to determine the effect of initial curvature
of a beam on the stresses and deflections caused by loads applied to the beam in the plane of initial
curvature. In the following discussion, all the conditions applicable to straight-beam formula are
assumed valid except that the beam is initially curved.

Let the curved beam DOE shown in Figure 2.13 be subjected to the loadsQ. The surface in which
the fibers do not change in length is called the neutral surface. The total deformations of the fibers
between two normal sections such as AB and A1B1 are assumed to vary proportionally with the
distances of the fibers from the neutral surface. The top fibers are compressed while those at the
bottom are stretched, i.e., the plane section before bending remains plane after bending.

In Figure 2.13 the two lines AB and A1B1 are two normal sections of the beam before the loads
are applied. The change in the length of any fiber between these two normal sections after bending
is represented by the distance along the fiber between the linesA1B1 andA′B ′; the neutral surface is
represented by NN1, and the stretch of fiber PP1 is P1P ′

1, etc. For convenience it will be assumed
that the line AB is a line of symmetry and does not change direction.

The total deformationsof thefibers in the curvedbeamareproportional to thedistancesof thefibers
from the neutral surface. However, the strains of the fibers are not proportional to these distances
because the fibers are not of equal length. Within the elastic limit the stress on any fiber in the beam
is proportional to the strain of the fiber, and hence the elastic stresses in the fibers of a curved beam
are not proportional to the distances of the fibers from the neutral surface. The resisting moment in
a curved beam, therefore, is not given by the expression σI/c. Hence, the neutral axis in a curved
beam does not pass through the centroid of the section. The distribution of stress over the section
and the relative position of the neutral axis are shown in Figure 2.13b; if the beam were straight, the
stress would be zero at the centroidal axis and would vary proportionally with the distance from the
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FIGURE 2.13: Bending of curved beams.

centroidal axis as indicated by the dot-dash line in the figure. The stress on a normal section such as
AB is called the circumferential stress.

Sign Conventions

The bending moment M is positive when it decreases the radius of curvature, and negative
when it increases the radius of curvature; y is positive when measured toward the convex side of the
beam, and negative when measured toward the concave side, that is, toward the center of curvature.
With these sign conventions, σ is positive when it is a tensile stress.

Circumferential Stresses

Figure 2.14 shows a free body diagram of the portion of the body on one side of the section;
the equations of equilibrium are applied to the forces acting on this portion. The equations obtained
are ∑

Fz = 0 or

∫
σda = 0 (2.17)

∑
Mz = 0 or M =

∫
yσda (2.18)

Figure 2.15 represents the part ABB1A1 of Figure 2.13a enlarged; the angle between the two
sectionsAB andA1B1 is dθ . The bending moment causes the planeA1B1 to rotate through an angle
1dθ , thereby changing the angle this plane makes with the plane BAC from dθ to (dθ +1dθ); the
center of curvature is changed from C to C′, and the distance of the centroidal axis from the center
of curvature is changed fromR to ρ. It should be noted that y,R, and ρ at any section are measured
from the centroidal axis and not from the neutral axis.

It can be shown that the bending stress σ is given by the relation

σ = M

aR

(
1 + 1

Z

y

R + y

)
(2.19)

in which

Z = −1

a

∫
y

R + y
da

σ is the tensile or compressive (circumferential) stress at a point at the distance y from the centroidal
axis of a transverse section at which the bending moment isM ; R is the distance from the centroidal
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FIGURE 2.14: Free-body diagram of curved beam segment.

FIGURE 2.15: Curvature in a curved beam.

axis of the section to the center of curvature of the central axis of the unstressed beam; a is the area of
the cross-section; Z is a property of the cross-section, the values of which can be obtained from the
expressions for various areas given in Table 2.1. Detailed information can be obtained from [51].

EXAMPLE 2.2:

The bent bar shown in Figure 2.16 is subjected to a loadP = 1780N. Calculate the circumferential
stress at A and B assuming that the elastic strength of the material is not exceeded.
We know from Equation 2.19

σ = P

a
+ M

aR

(
1 + 1

Z

y

R + y

)
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TABLE 2.1 Analytical Expressions forZ
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TABLE 2.1 Analytical Expressions forZ (continued)
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TABLE 2.1 Analytical Expressions forZ (continued)

From Seely, F.B. and Smith, J.O., Advanced Mechanics of Materials, John Wiley & Sons, New York, 1952. With permission.
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FIGURE 2.16: Bent bar.

in which
a = area of rectangular section = 40× 12 = 480mm2

R = 40 mm
yA = −20
yB = +20
P = 1780 N
M = −1780× 120= −213600N mm

From Table 2.1, for rectangular section

Z = −1 + R

h

[
loge

R + c

R − c

]
h = 40 mm

c = 20 mm

Hence,

Z = −1 + 40

40

[
loge

40+ 20

40− 20

]
= 0.0986

Therefore,

σA = 1780
480 + −213600

480×40

(
1 + 1

0.0986
−20

40−20

)
= 105.4 N mm2 (tensile)

σB = 1780
480 + −213600

480×40

(
1 + 1

0.0986
20

40+20

)
= −45 N mm2 (compressive)

2.3 Trusses

A structure that is composed of a number of bars pin connected at their ends to form a stable
framework is called a truss. If all the bars lie in a plane, the structure is a planar truss. It is generally
assumed that loads and reactions are applied to the truss only at the joints. The centroidal axis of each
member is straight, coincides with the line connecting the joint centers at each end of the member,
and lies in a plane that also contains the lines of action of all the loads and reactions. Many truss
structures are three dimensional in nature and a complete analysis would require consideration of the
full spatial interconnection of the members. However, in many cases, such as bridge structures and
simple roof systems, the three-dimensional framework can be subdivided into planar components
for analysis as planar trusses without seriously compromising the accuracy of the results. Figure 2.17
shows some typical idealized planar truss structures.
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FIGURE 2.17: Typical planar trusses.

There exists a relation between the number of members, m, number of joints, j , and reaction
components, r . The expression is

m = 2j − r (2.20)

which must be satisfied if it is to be statically determinate internally. The least number of reaction
components required for external stability is r . If m exceeds (2j − r), then the excess members are
called redundant members and the truss is said to be statically indeterminate.

Truss analysis gives the bar forces in a truss; for a statically determinate truss, these bar forces can
be found by employing the laws of statics to assure internal equilibrium of the structure. The process
requires repeated use of free-body diagrams from which individual bar forces are determined. The
method of joints is a technique of truss analysis in which the bar forces are determined by the sequential
isolation of joints—the unknown bar forces at one joint are solved and become known bar forces at
subsequent joints. The other method is known as method of sections in which equilibrium of a part
of the truss is considered.

2.3.1 Method of Joints

An imaginary section may be completely passed around a joint in a truss. The joint has become a
free body in equilibrium under the forces applied to it. The equations

∑
H = 0 and

∑
V = 0 may

be applied to the joint to determine the unknown forces in members meeting there. It is evident that
no more than two unknowns can be determined at a joint with these two equations.
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EXAMPLE 2.3:

A truss shown in Figure 2.18 is symmetrically loaded, and it is sufficient to solve half the truss by
considering the joints 1 through 5. At Joint 1, there are two unknown forces. Summation of the

FIGURE 2.18: Example—methods of joints, planar truss.

vertical components of all forces at Joint 1 gives

135− F12 sin 45= 0

which in turn gives the force in the member 1-2, F12 = 190.0 kN (compressive). Similarly, summa-
tion of the horizontal components gives

F13 − F12 cos 45◦ = 0

Substituting for F12 gives the force in the member 1-3 as

F13 = 135 kN (tensile).
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Now, Joint 2 is cut completely and it is found that there are two unknown forces F25 and F23.
Summation of the vertical components gives

F12 cos 45◦ − F23 = 0.

Therefore,
F23 = 135 kN (tensile).

Summation of the horizontal components gives

F12 sin 45◦ − F25 = 0

and hence
F25 = 135 kN (compressive).

After solving for Joints 1 and 2, one proceeds to take a section around Joint 3 at which there are now
two unknown forces, namely, F34 and F35. Summation of the vertical components at Joint 3 gives

F23 − F35 sin 45◦ − 90 = 0

Substituting for F23, one obtains F35 = 63.6 kN (compressive). Summing the horizontal compo-
nents and substituting for F13 one gets

−135− 45+ F34 = 0

Therefore,
F34 = 180 kN (tensile).

The next joint involving two unknowns is Joint 4. When we consider a section around it, the
summation of the vertical components at Joint 4 gives

F45 = 90 kN (tensile).

Now, the forces in all the members on the left half of the truss are known and by symmetry the forces
in the remaining members can be determined. The forces in all the members of a truss can also be
determined by making use of the method of section.

2.3.2 Method of Sections

If only a few member forces of a truss are needed, the quickest way to find these forces is by the
Method of Sections. In this method, an imaginary cutting line called a section is drawn through a
stable and determinate truss. Thus, a section subdivides the truss into two separate parts. Since the
entire truss is in equilibrium, any part of it must also be in equilibrium. Either of the two parts of the
truss can be considered and the three equations of equilibrium

∑
Fx = 0,

∑
Fy = 0, and

∑
M = 0

can be applied to solve for member forces.
The example considered in Section 2.3.1 (Figure 2.19) is once again considered. To calculate the

force in the member 3-5, F35, a section AA should be run to cut the member 3-5 as shown in the
figure. It is only required to consider the equilibrium of one of the two parts of the truss. In this
case, the portion of the truss on the left of the section is considered. The left portion of the truss
as shown in Figure 2.19 is in equilibrium under the action of the forces, namely, the external and
internal forces. Considering the equilibrium of forces in the vertical direction, one can obtain

135− 90+ F35 sin 45◦ = 0
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FIGURE 2.19: Example—method of sections, planar truss.

Therefore, F35 is obtained as
F35 = −45

√
2 kN

The negative sign indicates that the member force is compressive. This result is the same as the one
obtained by the Method of Joints. The other member forces cut by the section can be obtained by
considering the other equilibrium equations, namely,

∑
M = 0. More sections can be taken in the

same way so as to solve for other member forces in the truss. The most important advantage of this
method is that one can obtain the required member force without solving for the other member
forces.

2.3.3 Compound Trusses

A compound truss is formed by interconnecting two or more simple trusses. Examples of compound
trusses are shown in Figure 2.20. A typical compound roof truss is shown in Figure 2.20a in which

FIGURE 2.20: Compound truss.

two simple trusses are interconnected by means of a single member and a common joint. The
compound truss shown in Figure 2.20b is commonly used in bridge construction and in this case,
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three members are used to interconnect two simple trusses at a common joint. There are three simple
trusses interconnected at their common joints as shown in Figure 2.20c.

The Method of Sections may be used to determine the member forces in the interconnecting
members of compound trusses similar to those shown in Figure 2.20a and b. However, in the case
of cantilevered truss, the middle simple truss is isolated as a free body diagram to find its reactions.
These reactions are reversed and applied to the interconnecting joints of the other two simple trusses.
After the interconnecting forces between the simple trusses are found, the simple trusses are analyzed
by the Method of Joints or the Method of Sections.

2.3.4 Stability and Determinacy

A stable and statically determinate plane truss should have at least three members, three joints,
and three reaction components. To form a stable and determinate plane truss of ‘n’ joints, the three
members of the original triangle plus two additional members for each of the remaining (n−3) joints
are required. Thus, the minimum total number of members,m, required to form an internally stable
plane truss ism = 2n−3. If a stable, simple, plane truss ofn joints and (2n−3)members is supported
by three independent reaction components, the structure is stable and determinate when subjected
to a general loading. If the stable, simple, plane truss has more than three reaction components,
the structure is externally indeterminate. That means not all of the reaction components can be
determined from the three available equations of statics. If the stable, simple, plane truss has more
than (2n− 3)members, the structure is internally indeterminate and hence all of the member forces
cannot be determined from the 2n available equations of statics in the Method of Joints. The analyst
must examine the arrangement of the truss members and the reaction components to determine if
the simple plane truss is stable. Simple plane trusses having (2n − 3) members are not necessarily
stable.

2.4 Frames

Frames are statically indeterminate in general; special methods are required for their analysis. Slope
deflection and moment distribution methods are two such methods commonly employed. Slope
deflection is a method that takes into account the flexural displacements such as rotations and
deflections and involves solutions of simultaneous equations. Moment distribution on the other
hand involves successive cycles of computation, each cycle drawing closer to the “exact” answers.
The method is more labor intensive but yields accuracy equivalent to that obtained from the “exact”
methods. This method, however, remains the most important hand-calculation method for the
analysis of frames.

2.4.1 Slope Deflection Method

This method is a special case of the stiffness method of analysis, and it is convenient for hand analysis
of small structures. Moments at the ends of frame members are expressed in terms of the rotations
and deflections of the joints. Members are assumed to be of constant section between each pair of
supports. It is further assumed that the joints in a structure may rotate or deflect, but the angles
between the members meeting at a joint remain unchanged.

The member force-displacement equations that are needed for the slope deflection method are
written for a member AB in a frame. This member, which has its undeformed position along the
x axis is deformed into the configuration shown in Figure 2.21. The positive axes, along with the
positive member-end force components and displacement components, are shown in the figure.
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FIGURE 2.21: Deformed configuration of a beam.

The equations for end moments are written as

MAB = 2EI

l
(2θA + θB − 3ψAB)+MFAB

MBA = 2EI

l
(2θB + θA − 3ψAB)+MFBA (2.21)

in which MFAB and MFBA are fixed-end moments at supports A and B, respectively, due to the
applied load. ψAB is the rotation as a result of the relative displacement between the member ends
A and B given as

ψAB = 1AB

l
= yA + yB

l
(2.22)

where 1AB is the relative deflection of the beam ends. yA and yB are the vertical displacements
at ends A and B. Fixed-end moments for some loading cases may be obtained from Figure 2.8.
The slope deflection equations in Equation 2.21 show that the moment at the end of a member
is dependent on member properties EI , dimension l, and displacement quantities. The fixed-end
moments reflect the transverse loading on the member.

2.4.2 Application of Slope Deflection Method to Frames

The slope deflection equations may be applied to statically indeterminate frames with or without
sidesway. A frame may be subjected to sidesway if the loads, member properties, and dimensions of
the frame are not symmetrical about the centerline. Application of slope deflection method can be
illustrated with the following example.

EXAMPLE 2.4:

Consider the frame shown in Figure 2.22. subjected to sidesway 1 to the right of the frame.
Equation 2.21 can be applied to each of the members of the frame as follows:

Member AB:

MAB = 2EI

20

(
2θA + θB − 31

20

)
+MFAB
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FIGURE 2.22: Example—slope deflection method.

MBA = 2EI

20

(
2θB + θA − 31

20

)
+MFBA

θA = 0, MFAB = MFBA = 0

Hence,

MAB = 2EI

20
(θB − 3ψ) (2.23)

MBA = 2EI

20
(2θB − 3ψ) (2.24)

in which

ψ = 1

20
Member BC:

MBC = 2EI

30
(2θB + θC − 3 × 0)+MFBC

MCB = 2EI

30
(2θC + θB − 3 × 0)+MFCB

MFBC = −40× 10× 202

302
= −178 ft-kips

MFCB = −40× 102 × 20

302
= 89 ft-kips

Hence,

MBC = 2EI

30
(2θB + θC)− 178 (2.25)

MCB = 2EI

30
(2θC + θB)+ 89 (2.26)

Member CD:

MCD = 2EI

30

(
2θC + θD − 31

30

)
+MFCD

MDC = 2EI

30

(
2θD + θC − 31

30

)
+MFDC

MFCD = MFDC = 0
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Hence,

MDC = 2EI

30

(
θC − 3 × 2

3
ψ

)
= 2EI

30
(2θC − 2ψ) (2.27)

MDC = 2EI

30

(
θC − 3 × 2

3
ψ

)
= 2EI

30
(θC − 2ψ) (2.28)

Considering moment equilibrium at Joint B∑
MB = MBA +MBC = 0

Substituting forMBA andMBC , one obtains

EI

30
(10θB + 2θC − 9ψ) = 178

or

10θB + 2θC − 9ψ = 267

K
(2.29)

whereK = EI
20 .

Considering moment equilibrium at Joint C∑
MC = MCB +MCD = 0

Substituting forMCB andMCD we get

2EI

30
(4θC + θB − 2ψ) = −89

or

θB + 4θC − 2ψ = −66.75

K
(2.30)

Summation of base shear equals to zero, we have∑
H = HA +HD = 0

or
MAB +MBA

1AB
+ MCD +MDC

1CD
= 0

Substituting forMAB,MBA,MCD , andMDC and simplifying

2θB + 12θC − 70ψ = 0 (2.31)

Solution of Equations 2.29 to 2.31 results in

θB = 42.45

K

θC = 20.9

K

and

ψ = 12.8

K
(2.32)
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Substituting for θB, θC , and ψ from Equations 2.32 into Equations 2.23 to 2.28 we get,

MAB = 10.10 ft-kips

MBA = 93 ft-kips

MBC = −93 ft-kips

MCB = 90 ft-kips

MCD = −90 ft-kips

MDC = −62 ft-kips

2.4.3 Moment Distribution Method

Themomentdistributionmethod involves successive cycles of computation, each cycle drawing closer
to the “exact” answers. The calculations may be stopped after two or three cycles, giving a very good
approximate analysis, or they may be carried on to whatever degree of accuracy is desired. Moment
distribution remains the most important hand-calculation method for the analysis of continuous
beams and frames and it may be solely used for the analysis of small structures. Unlike the slope
deflection method, this method does require the solution to simultaneous equations.

The terms constantly used in moment distribution are fixed-end moments, unbalanced moment,
distributed moments, and carry-over moments. When all of the joints of a structure are clamped to
prevent any joint rotation, the external loads produce certain moments at the ends of the members
to which they are applied. These moments are referred to as fixed-end moments. Initially the joints
in a structure are considered to be clamped. When the joint is released, it rotates if the sum of the
fixed-end moments at the joint is not zero. The difference between zero and the actual sum of the
end moments is the unbalanced moment. The unbalanced moment causes the joint to rotate. The
rotation twists the ends of the members at the joint and changes their moments. In other words,
rotation of the joint is resisted by the members and resisting moments are built up in the members as
they are twisted. Rotation continues until equilibrium is reached—when the resisting moments equal
the unbalanced moment—at which time the sum of the moments at the joint is equal to zero. The
moments developed in the members resisting rotation are the distributed moments. The distributed
moments in the ends of the member cause moments in the other ends, which are assumed fixed, and
these are the carry-over moments.

Sign Convention

The moments at the end of a member are assumed to be positive when they tend to rotate the
member clockwise about the joint. This implies that the resisting moment of the joint would be
counter-clockwise. Accordingly, under gravity loading condition the fixed-end moment at the left
end is assumed as counter-clockwise (−ve) and at the right end as clockwise (+ve).

Fixed-End Moments

Fixed-end moments for several cases of loading may be found in Figure 2.8. Application of
moment distribution may be explained with reference to a continuous beam example as shown in
Figure 2.23. Fixed-end moments are computed for each of the three spans. At JointB the unbalanced
moment is obtained and the clamp is removed. The joint rotates, thus distributing the unbalanced
moment to the B-ends of spans BA and BC in proportion to their distribution factors. The values
of these distributed moments are carried over at one-half rate to the other ends of the members.
When equilibrium is reached, Joint B is clamped in its new rotated position and Joint C is released
afterwards. Joint C rotates under its unbalanced moment until it reaches equilibrium, the rotation
causing distributed moments in the C-ends of members CB and CD and their resulting carry-over
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FIGURE 2.23: Example—continuous beam by moment distribution.

moments. Joint C is now clamped and Joint B is released. This procedure is repeated again and
again for Joints B and C, the amount of unbalanced moment quickly diminishing, until the release
of a joint causes negligible rotation. This process is called moment distribution.

The stiffness factors and distribution factors are computed as follows:

DFBA = KBA∑
K

= I/20

I/20+ I/30
= 0.6

DFBC = KBC∑
K

= I/30

I/20+ I/30
= 0.4

DFCB = KCB∑
K

= I/30

I/30+ I/25
= 0.45

DFCD = KCD∑
K

= I/25

I/30+ I/25
= 0.55

Fixed-end moments

MFAB = −50 ft-kips; MFBC = −150 ft-kips; MFCD = −104 ft-kips
MFBA = 50 ft-kips; MFCB = 150 ft-kips; MFDC = 104 ft-kips

When a clockwise couple is applied at the near end of a beam, a clockwise couple of half the
magnitude is set up at the far end of the beam. The ratio of the moments at the far and near ends
is defined as carry-over factor, and it is 1

2 in the case of a straight prismatic member. The carry-over
factor was developed for carrying over to fixed ends, but it is applicable to simply supported ends,
which must have final moments of zero. It can be shown that the beam simply supported at the
far end is only three-fourths as stiff as the one that is fixed. If the stiffness factors for end spans
that are simply supported are modified by three-fourths, the simple end is initially balanced to zero
and no carry-overs are made to the end afterward. This simplifies the moment distribution process
significantly.
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FIGURE 2.24: Example—non-sway frame by moment distribution.

Moment Distribution for Frames

Moment distribution for frames without sidesway is similar to that for continuous beams. The
example shown in Figure 2.24 illustrates the applications of moment distribution for a frame without
sidesway.

DFBA = EI/20
EI
20 + EI

20 + 2EI
20

= 0.25

Similarly
DFBE = 0.50; DFBC = 0.25
MFBC = −100 ft-kips; MFCB = 100 ft-kips
MFBE = 50 ft-kips; MFEB = −50 ft-kips.

Structural frames are usually subjected to sway in one direction or the other due to asymmetry
of the structure and eccentricity of loading. The sway deflections affect the moments resulting in
unbalanced moment. These moments could be obtained for the deflections computed and added to
the originally distributed fixed-end moments. The sway moments are distributed to columns. Should
a frame have columns all of the same length and the same stiffness, the sidesway moments will be the
same for each column. However, should the columns have differing lengths and/or stiffness, this will
not be the case. The sidesway moments should vary from column to column in proportion to their
I/ l2 values.
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The frame in Figure 2.25 shows a frame subjected to sway. The process of obtaining the final
moments is illustrated for this frame.

The frame sways to the right and the sidesway moment can be assumed in the ratio

400

202
: 300

202
(or) 1 : 0.7

Final moments are obtained by adding distributed fixed-end moments and 13.06
2.99 times the dis-

tributed assumed sidesway moments.

2.4.4 Method of Consistent Deformations

The method of consistent deformations makes use of the principle of deformation compatibility to
analyze indeterminate structures. This method employs equations that relate the forces acting on the
structure to the deformations of the structure. These relations are formed so that the deformations
are expressed in terms of the forces and the forces become the unknowns in the analysis.

Let us consider the beam shown in Figure 2.26a. The first step, in this method, is to determine
the degree of indeterminacy or the number of redundants that the structure possesses. As shown
in the figure, the beam has three unknown reactions, RA,RC, and MA. Since there are only two
equations of equilibrium available for calculating the reactions, the beam is said to be indeterminate
to the first degree. Restraints that can be removed without impairing the load-supporting capacity
of the structure are referred to as redundants.

Once the number of redundants is known, the next step is to decide which reaction is to be removed
in order to form a determinate structure. Any one of the reactions may be chosen to be the redundant
provided that a stable structure remains after the removal of that reaction. For example, let us take
the reaction RC as the redundant. The determinate structure obtained by removing this restraint is
the cantilever beam shown in Figure 2.26b. We denote the deflection at endC of this beam, due toP ,
by 1CP . The first subscript indicates that the deflection is measured at C and the second subscript
that the deflection is due to the applied load P . Using the moment area method, it can be shown
that 1CP = 5PL3/48EI . The redundant RC is then applied to the determinate cantilever beam,
as shown in Figure 2.26c. This gives rise to a deflection1CR at point C the magnitude of which can
be shown to be RCL3/3EI .

In the actual indeterminate structure, which is subjected to the combined effects of the load P
and the redundantRC , the deflection at C is zero. Hence the algebraic sum of the deflection1CP in
Figure 2.26b and the deflection 1CR in Figure 2.26c must vanish. Assuming downward deflections
to be positive, we write

1CP −1CR = 0 (2.33)

or
5PL3

48EI
− RCL

3

3EI
= 0

from which

RC = 5

16
P

Equation 2.33, which is used to solve for the redundant, is referred to as an equation of consistent of
deformation.

Once the redundantRC has been evaluated, one can determine the remaining reactions by applying
the equations of equilibrium to the structure in Figure 2.26a. Thus,

∑
Fy = 0 leads to

RA = P − 5

16
P = 11

16
P
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FIGURE 2.25: Example—sway frame by moment distribution.
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FIGURE 2.25: (Continued) Example—sway frame by moment distribution.
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FIGURE 2.26: Beam with one redundant reaction.

and
∑
MA = 0 gives

MA = PL

2
− 5

16
PL = 3

16
PL

A free body of the beam, showing all the forces acting on it, is shown in Figure 2.26d.
The steps involved in the method of consistent deformations are:

1. The number of redundants in the structure is determined.

2. Enough redundants are removed to form a determinate structure.

3. The displacements that the applied loads cause in the determinate structure at the points
where the redundants have been removed are then calculated.

4. The displacements at these points in the determinate structure due to the redundants are
obtained.

5. At each point where a redundant has been removed, the sum of the displacements calcu-
lated in Steps 3 and 4 must be equal to the displacement that exists at that point in the
actual indeterminate structure. The redundants are evaluated using these relationships.

6. Once the redundants are known, the remaining reactions are determined using the equa-
tions of equilibrium.

Structures with Several Redundants

The method of consistent deformations can be applied to structures with two or more redun-
dants. For example, the beam in Figure 2.27a is indeterminate to the second degree and has two
redundant reactions. If we let the reactions at B and C be the redundants, then the determinate
structure obtained by removing these supports is the cantilever beam shown in Figure 2.27b. To this
determinate structure we apply separately the given load (Figure 2.27c) and the redundants RB and
RC one at a time (Figures 2.27d and e).

Since the deflections at B andC in the original beam are zero, the algebraic sum of the deflections
in Figures 2.27c, d, and e at these same points must also vanish.
Thus,

1BP −1BB −1BC = 0

1CP −1CB −1CC = 0 (2.34)
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FIGURE 2.27: Beam with two redundant reactions.
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It is useful in the case of complex structures to write the equations of consistent deformations in
the form

1BP − δBBRB − δBCRC = 0

1CP − δCBRB − δCCRC = 0 (2.35)

in which δBC , for example, denotes the deflection atB due to a unit load atC in the direction ofRC .
Solution of Equation 2.35 gives the redundant reactions RB and RC .

EXAMPLE 2.5:

Determine the reactions for the beam shown in Figure 2.28 and draw its shear force and bending
moment diagrams.

It can be seen from the figure that there are three reactions, namely, MA,RA, and RC one more
than that required for a stable structure. The reaction RC can be removed to make the structure
determinate. We know that the deflection at support C of the beam is zero. One can determine the
deflection δCP at C due to the applied load on the cantilever in Figure 2.28b. The deflection δCR at
C due to the redundant reaction on the cantilever (Figure 2.28c) can be determined in the same way.
The compatibility equation gives

δCP − δCR = 0

By moment area method,

δCP = 20

EI
× 2 × 1 + 1

2
× 20

EI
× 2 × 2

3
× 2

+ 40

EI
× 2 × 3 + 1

2
× 60

EI
× 2 ×

(
2

3
× 2 + 2

)

= 1520

3EI

δCR = 1

2
× 4RC
EI

× 4 × 2

3
× 4 = 64RC

3EI

Substituting for δCP and δCR in the compatibility equation one obtains

1520

3EI
− 64RC

3EI
= 0

from which

RC = 23.75 kN ↑
By using statical equilibrium equations we get

RA = 6.25 kN ↑

and

MA = 5 kNm.

The shear force and bending moment diagrams are shown in Figure 2.28d.
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FIGURE 2.28: Example 2.5.
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2.5 Plates

2.5.1 Bending of Thin Plates

When the thickness of an object is small compared to the other dimensions, it is called a thin plate.
The plane parallel to the faces of the plate and bisecting the thickness of the plate, in the undeformed
state, is called the middle plane of the plate. When the deflection of the middle plane is small
compared with the thickness, h, it can be assumed that

1. There is no deformation in the middle plane.

2. The normal of the middle plane before bending is deformed into the normals of the
middle plane after bending.

3. The normal stresses in the direction transverse to the plate can be neglected.

Based on these assumptions, all stress components can be expressed by deflection w′ of the plate.
w′ is a function of the two coordinates (x, y) in the plane of the plate. This function has to satisfy a
linear partial differential equation, which, together with the boundary conditions, completely defines
w′.

Figure 2.29a shows a plate element cut from a plate whose middle plane coincides with thexy plane.
The middle plane of the plate subjected to a lateral load of intensity ‘q’ is shown in Figure 2.29b. It
can be shown, by considering the equilibrium of the plate element, that the stress resultants are given
as

Mx = −D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)

My = −D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)

Mxy = −Myx = D(1 − ν)
∂2w

∂x∂y
(2.36)

Vx = ∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2
(2.37)

Vy = ∂3w

∂y3
+ (2 − ν)

∂3w

∂y∂x2
(2.38)

Qx = −D ∂

∂x

(
∂2w

∂x2
+ ∂2w

∂y2

)
(2.39)

Qy = −D ∂

∂y

(
∂2w

∂x2
+ ∂2w

∂y2

)
(2.40)

R = 2D(1 − ν)
∂2w

∂x∂y
(2.41)

where
Mx andMy = bending moments per unit length in the x and y directions, respectively
Mxy andMyx = twisting moments per unit length
Qx andQy = shearing forces per unit length in the x and y directions, respectively
Vx and Vy = supplementary shear forces in the x and y directions, respectively
R = corner force
D = Eh3

12(1−ν2)
, flexural rigidity of the plate per unit length

E = modulus of elasticity
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FIGURE 2.29: (a) Plate element; (b) stress resultants.

ν = Poisson’s Ratio

The governing equation for the plate is obtained as

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= q

D
(2.42)

Any plate problem should satisfy the governing Equation 2.42 and boundary conditions of the
plate.

2.5.2 Boundary Conditions

There are three basic boundary conditions for plate problems. These are the clamped edge, the simply
supported edge, and the free edge.

c©1999 by CRC Press LLC



Clamped Edge

For this boundary condition, the edge is restrained such that the deflection and slope are zero
along the edge. If we consider the edge x = a to be clamped, we have

(w)x=a = 0

(
∂w

∂x

)
x=a

= 0 (2.43)

Simply Supported Edge

If the edge x = a of the plate is simply supported, the deflection w along this edge must be
zero. At the same time this edge can rotate freely with respect to the edge line. This means that

(w)x=a = 0;
(
∂2w

∂x2

)
x=a

= 0 (2.44)

Free Edge

If the edge x = a of the plate is entirely free, there are no bending and twisting moments or
vertical shearing forces. This can be written in terms of w, the deflection as

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
x=a

= 0

(
∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

)
x=a

= 0 (2.45)

2.5.3 Bending of Simply Supported Rectangular Plates

A number of the plate bending problems may be solved directly by solving the differential Equa-
tion 2.42. The solution, however, depends on the loading and boundary condition. Consider a
simply supported plate subjected to a sinusoidal loading as shown in Figure 2.30. The differential

FIGURE 2.30: Rectangular plate under sinusoidal loading.

Equation 2.42 in this case becomes

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= qo

D
sin

πx

a
sin

πy

b
(2.46)
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The boundary conditions for the simply supported edges are

w = 0,
∂2w

∂x2
= 0 for x = 0 and x = a

w = 0,
∂2w

∂y2
= 0 for y = 0 and y = b (2.47)

The deflection function becomes
w = w0 sin

πx

a
sin

πy

b
(2.48)

which satisfies all the boundary conditions in Equation 2.47. w0 must be chosen to satisfy Equa-
tion 2.46. Substitution of Equation 2.48 into Equation 2.46 gives

π4
(

1

a2
+ 1

b2

)2

w0 = qo

D

The deflection surface for the plate can, therefore, be found as

w = qo

π4D
(

1
a2 + 1

b2

)2
sin

πx

a
sin

πy

b
(2.49)

Using Equations 2.49 and 2.36, we find expression for moments as

Mx = qo

π2
(

1
a2 + 1

b2

)2

(
1

a2
+ ν

b2

)
sin

πx

a
sin

πy

b

My = qo

π2
(

1
a2 + 1

b2

)2

(
ν

a2
+ 1

b2

)
sin

πx

a
sin

πy

b

Mxy = qo(1 − ν)

π2
(

1
a2 + 1

b2

)2
ab

cos
πx

a
cos

πy

b
(2.50)

Maximum deflection and maximum bending moments that occur at the center of the plate can be
written by substituting x = a/2 and y = b/2 in Equation 2.50 as

wmax = qo

π4D
(

1
a2 + 1

b2

)2
(2.51)

(Mx)max = qo

π2
(

1
a2 + 1

b2

)2

(
1

a2
+ ν

b2

)

(My)max = qo

π2
(

1
a2 + 1

b2

)2

(
ν

a2
+ 1

b2

)

If the plate is square, then a = b and Equation 2.51 becomes

wmax = qoa
4

4π4D′

(Mx)max = (My)max = (1 + ν)

4π2
qoa

2 (2.52)
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If the simply supported rectangular plate is subjected to any kind of loading given by

q = q(x, y) (2.53)

the function q(x, y) should be represented in the form of a double trigonometric series as

q(x, y) =
∞∑
m=1

∞∑
n=1

qmn sin
mπx

a
sin

nπy

b
(2.54)

in which qmn is given by

qmn = 4

ab

∫ a

0

∫ b

0
q(x, y) sin

mπx

a
sin

nπy

b
dxdy (2.55)

From Equations 2.46, 2.53, 2.54, and 2.55 we can obtain the expression for deflection as

w = 1

π4D

∞∑
m=1

∞∑
n=1

qmn(
m2

a2 + n2

b2

)2
sin

mπx

a
sin

nπy

b
(2.56)

If the applied load is uniformly distributed of intensity qo, we have

q(x, y) = qo

and from Equation 2.55 we obtain

qmn = 4qo
ab

∫ a

0

∫ b

0
sin

mπx

a
sin

nπy

b
dxdy = 16qo

π2mn
(2.57)

in which ‘m’ and ‘n’ are odd integers. qmn = 0 if ‘m’ or ‘n’ or both of them are even numbers. We
can, therefore, write the expression for deflection of a simply supported plate subjected to uniformly
distributed load as

w = 16qo
π6D

∞∑
m=1

∞∑
n=1

sin mπx
a

sin nπy
b

mn
(
m2

a2 + n2

b2

)2
(2.58)

wherem = 1,3,5, . . . and n = 1,3,5, . . .
The maximum deflection occurs at the center and it can be written by substituting x = a

2 and

y = b
2 in Equation 2.58 as

wmax = 16qo
π6D

∞∑
m=1

∞∑
n=1

(−1)
m+n

2 −1

mn
(
m2

a2 + n2

b2

)2
(2.59)

Equation 2.59 is a rapid converging series and a satisfactory approximation can be obtained by taking
only the first term of the series; for example, in the case of a square plate,

wmax = 4qoa4

π6D
= 0.00416

qoa
4

D

Assuming ν = 0.3, we get for the maximum deflection

wmax = 0.0454
qoa

4

Eh3
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FIGURE 2.31: Typical loading on plates and loading functions.
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FIGURE 2.31: (Continued) Typical loading on plates and loading functions.

FIGURE 2.32: Rectangular plate.

The expressions for bending and twisting moments can be obtained by substituting Equation 2.58
into Equation 2.36. Figure 2.31 shows some loading cases and the corresponding loading functions.

The above solution for uniformly loaded cases is known as Navier solution. If two opposite sides
(say x = 0 and x = a) of a rectangular plate are simply supported, the solution taking the deflection
function as

w =
∞∑
m=1

Ym sin
mπx

a
(2.60)
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can be adopted. This solution was proposed by Levy [53]. Equation 2.60 satisfies the boundary

conditions w = 0 and ∂2w

∂x2 = 0 on the two simply supported edges. Ym should be determined such

that it satisfies the boundary conditions along the edges y = ± b
2 of the plate shown in Figure 2.32

and also the equation of the deflection surface

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= qo

D
(2.61)

qo being the intensity of uniformly distributed load.
The solution for Equation 2.61 can be taken in the form

w = w1 + w2 (2.62)

for a uniformly loaded simply supported plate. w1 can be taken in the form

w1 = qo

24D

(
x4 − 2ax3 + a3x

)
(2.63)

representing the deflection of a uniformly loaded strip parallel to the x axis. It satisfies Equation 2.61
and also the boundary conditions along x = 0 and x = a.

The expression w2 has to satisfy the equation

∂4w2

∂x4
+ 2

∂4w2

∂x2∂y2
+ ∂4w2

∂y4
= 0 (2.64)

and must be chosen such that Equation 2.62 satisfies all boundary conditions of the plate. Takingw2
in the form of series given in Equation 2.60 it can be shown that the deflection surface takes the form

wψ = qo

24D

(
x4 − 2ax3 + a3x

)
+ qoa

4

24D

∞∑
m=1

(
Am cosh

mπy

a

+ Bm
mπy

a
sinh

mπy

a
+ Cm sinh

mπy

a
(2.65)

+Dmmπy
a

cosh
mπy

a

)
sin

mπx

a

Observing that the deflection surface of the plate is symmetrical with respect to the x axis, we keep
in Equation 2.65 only an even function of y; therefore, Cm = Dm = 0. The deflection surface takes
the form

w = qo

24D

(
x4 − 2ax3 + a3x

)
+ qoa

4

24D

∞∑
m=1

(
Am cosh

mπy

a

+Bmmπy
a

sinh
mπy

a

)
sin

mπx

a
(2.66)

Developing the expression in Equation 2.63 into a trigonometric series, the deflection surface in
Equation 2.66 is written as

w = qoa
4

D

∞∑
m=1

(
4

π5m5
+ Am cosh

mπy

a
+ Bm

mπy

a
sin

mπy

a

)
sin

mπx

a
(2.67)

Substituting Equation 2.67 in the boundary conditions

w = 0,
∂2w

∂y2
= 0 (2.68)
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one obtains the constants of integrationAm andBm and the expression for deflection may be written
as

w = 4qoa4

π5D

∞∑
m=1,3,5...

1

m5

(
1 − αm tanhαm + 2

2 coshαm
cosh

2αmy

b

+ αm

2 coshαm

2y

b
sinh

2αmy

b

)
sin

mπx

a
(2.69)

in which αm = mπb
2a .

Maximum deflection occurs at the middle of the plate, x = a
2, y = 0 and is given by

w = 4qoa4

π5D

∞∑
m=1,3,5...

(−1)
m−1

2

m5

(
1 − αm tanhαm + 2

2 coshαm

)
(2.70)

Solution of plates with arbitrary boundary conditions are complicated. It is possible to make some
simplifying assumptions for plates with the same boundary conditions along two parallel edges in
order to obtain the desired solution. Alternately, the energy method can be applied more efficiently
to solve plates with complex boundary conditions. However, it should be noted that the accuracy of
results depends upon the deflection function chosen. These functions must be so chosen that they
satisfy at least the kinematics boundary conditions.

Figure 2.33 gives formulas for deflection and bending moments of rectangular plates with typical
boundary and loading conditions.

2.5.4 Bending of Circular Plates

In the case of symmetrically loaded circular plate, the loading is distributed symmetrically about the
axis perpendicular to the plate through its center. In such cases, the deflection surface to which the
middle plane of the plate is bent will also be symmetrical. The solution of circular plates can be
conveniently carried out by using polar coordinates.

Stress resultants in a circular plate element are shown in Figure 2.34. The governing differential
equation is expressed in polar coordinates as

1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)]}
= q

D
(2.71)

in which q is the intensity of loading.
In the case of uniformly loaded circular plates, Equation 2.71 can be integrated successively and

the deflection at any point at a distance r from the center can be expressed as

w = qor
4

64D
+ C1r

2

4
+ C2 log

r

a
+ C3 (2.72)

in which qo is the intensity of loading and a is the radius of the plate. C1, C2, and C3 are constants
of integration to be determined using the boundary conditions.

For a plate with clamped edges under uniformly distributed load qo, the deflection surface reduces
to

w = qo

64D

(
a2 − r2

)2
(2.73)

The maximum deflection occurs at the center where r = 0, and is given by

w = qoa
4

64D
(2.74)
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FIGURE 2.33: Typical loading and boundary conditions for rectangular plates.

Bending moments in the radial and tangential directions are respectively given by

Mr = qo

16

[
a2(1 + ν)− r2(3 + ν)

]
Mt = qo

16

[
a2(1 + ν)− r2(1 + 3ν)

]
(2.75)

The method of superposition can be applied in calculating the deflections for circular plates with
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FIGURE 2.34: (a) Circular plate; (b) stress resultants.

simply supported edges. The expressions for deflection and bending moment are given as follows:

w = qo(a
2 − r2)

64D

(
5 + ν

1 + ν
a2 − r2

)

wmax = 5 + ν

64(1 + ν)

qoa
4

D
(2.76)

Mr = qo

16
(3 + ν)(a2 − r2)

Mt = qo

16

[
a2(3 + ν)− r2(1 + 3ν)

]
(2.77)

This solution can be used to deal with plates with circular holes at the center and subjected to
concentric moment and shearing forces. Plates subjected to concentric loading and concentrated
loading also can be solved by this method. More rigorous solutions are available to deal with irregular
loading on circular plates. Once again energy method can be employed advantageously to solve
circular plate problems. Figure 2.35 gives deflection and bending moment expressions for typical
cases of loading and boundary conditions on circular plates.
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FIGURE 2.35: Typical loading and boundary conditions for circular plates.
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FIGURE 2.35: (Continued) Typical loading and boundary conditions for circular plates.
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2.5.5 Strain Energy of Simple Plates

The strain energy expression for a simple rectangular plate is given by

Uψ = D

2

∫ ∫
area

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

−2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2
−
(
∂2w

∂x∂y

)2]}
dxdyψ (2.78)

Suitable deflection function w(x, y) satisfying the boundary conditions of the given plate may be
chosen. The strain energy, U , and the work done by the given load, q(x, y),

W = −
∫ ∫

area
q(x, y)w(x, y)dxdyψ (2.79)

can be calculated. The total potential energy is, therefore, given as V = U + W . Minimizing the
total potential energy the plate problem can be solved.[

∂2w

∂x2

∂2w

∂y2
−
(
∂2w

∂x∂y

)2]

The term is known as the Gaussian curvature.
If the function w(x, y) = f (x) · φ(y) (product of a function of x only and a function of y only)

and w = 0 at the boundary are assumed, then the integral of the Gaussian curvature over the entire
plate equals zero. Under these conditions

U = D

2

∫ ∫
area

(
∂2w

∂x2
+ ∂2w

∂y2

)2

dxdy

If polar coordinates instead of rectangular coordinates are used and axial symmetry of loading and
deformation is assumed, the equation for strain energy, U , takes the form

U = D

2

∫ ∫
area

{(
∂2w

∂r2
+ 1

r

∂w

∂r

)2

− 2(1 − ν)

r

∂w

∂r

∂2w

∂r2

}
rdrdθψ (2.80)

and the work done,W , is written as

W = −
∫ ∫

area
qwrdrdθψ (2.81)

Detailed treatment of the Plate Theory can be found in [56].

2.5.6 Plates of Various Shapes and Boundary Conditions

Simply Supported Isosceles Triangular Plate Subjected to a Concentrated Load

Plates of shapes other than circle and rectangle are used in some situations. A rigorous solution
of the deflection for a plate with a more complicated shape is likely to be very difficult. Consider, for
example, the bending of an isosceles triangular plate with simply supported edges under concentrated
load P acting at an arbitrary point (Figure 2.36). A solution can be obtained for this plate by
considering a mirror image of the plate as shown in the figure. The deflection ofOBC of the square
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FIGURE 2.36: Isosceles triangular plate.

plate is identical with that of a simply supported triangular plateOBC. The deflection owing to the
force P can be written as

w1 = 4Pa2

π4D

∞∑
m=1

∞∑
n=1

sin(mπx1/a) sin(nπy1/a)

(m2 + n2)2
sin

mπx

a
sin

nπy

a
(2.82)

Upon substitution of −P for P, (a− y1) for x1, and (a− x1) for y1 in Equation 2.82 we obtain the
deflection due to the force −P at Ai :

w2 = −4Pa2

π4D

∞∑
m=1

∞∑
n=1

(−1)m+n sin(mπx1/a) sin(nπy1/a)

(m2 + n2)2
sin

mπx

a
sin

nπy

a
(2.83)

The deflection surface of the triangular plate is then

w = w1 + w2 (2.84)

Equilateral Triangular Plates

The deflection surface of a simply supported plate loaded by uniform moment Mo along its
boundary and the surface of a uniformly loaded membrane, uniformly stretched over the same
triangular boundary, are identical. The deflection surface for such a case can be obtained as

w = Mo

4aD

[
x3 − 3xy2 − a(x2 + y2)+ 4

27
a3
]

(2.85)

If the simply supported plate is subjected to uniform load po the deflection surface takes the form

w = po

64aD

[
x3 − 3xy2 − a(x2 + y2)+ 4

27
a3
](

4

9
a2 − x2 − y2

)
(2.86)

For the equilateral triangular plate (Figure 2.37) subjected to uniform load and supported at the
corners approximate solutions based on the assumption that the total bending moment along each
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FIGURE 2.37: Equilateral triangular plate with coordinate axes.

side of the triangle vanishes were obtained by Vijakkhana et al. [58] who derived an equation for
deflection surface as

w = qa4

144(1 − ν2)D

[
8

27
(7 + ν)(2 − ν)− (7 + ν)(1 − ν)

(
x2

a2
+ y2

a2

)
− (5 − ν)(1 + ν)

(
x3

a3
− 3

xy2

a3

)

+9

4
(1 − ν2)

(
x4

a4
+ 2

x2y2

a4
+ y4

a4

)]
(2.87)

The errors introduced by the approximate boundary condition, i.e., the total bending moment along
each side of the triangle vanishes, are not significant because its influence on the maximum deflection
and stress resultants is small for practical design purposes. The value of the twisting moment on the
edge at the corner given by this solution is found to be exact.

The details of the mathematical treatment may be found in [58].

Rectangular Plate Supported at Corners

Approximate solutions for rectangular plates supported at the corners and subjected to uni-
formly distributed load were obtained by Lee and Ballesteros [36]. The approximate deflection
surface is given as

w = qa4

48(1 − ν2)D

[
(10+ ν − ν2)

(
1 + b4

a4

)
− 2(7ν − 1)

b2

a2

+ 2

(
(1 + 5ν)

b2

a2
− (6 + ν − ν2)

)
x

a

+ 2

(
(1 + 5ν)− (6 + ν − ν2)

b2

a2

)
y2

a2

+(2 + ν − ν2)
x4 + y4

a4
− 6(1 + ν)

x2y2

a4

]
(2.88)

The details of the mathematical treatment may be found in [36].
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2.5.7 Orthotropic Plates

Plates of anisotropic materials have important applications owing to their exceptionally high bending
stiffness. A nonisotropic or anisotropic material displays direction-dependent properties. Simplest
among them are those in which the material properties differ in two mutually perpendicular direc-
tions. A material so described is orthotropic, e.g., wood. A number of manufactured materials are
approximated as orthotropic. Examples include corrugated and rolled metal sheets, fillers in sand-
wich plate construction, plywood, fiber reinforced composites, reinforced concrete, and gridwork.
The latter consists of two systems of equally spaced parallel ribs (beams), mutually perpendicular,
and attached rigidly at the points of intersection.

The governing equation for orthotropic plates similar to that of isotropic plates (Equation 2.42)
takes the form

Dx
δ4w

δx4
+ 2H

δ4w

δx2δy2
+Dy

δ4w

δy4
= q (2.89)

In which

Dx = h3Ex

12
, Dy = h3Ey

12
, H = Dxy + 2Gxy, Dxy = h3Exy

12
, Gxy = h3G

12
The expressions forDx,Dy,Dxy , andGxy represent the flexural rigidities and the torsional rigidity
of an orthotropic plate, respectively. Ex,Ey , and G are the orthotropic plate moduli. Practical
considerations often lead to assumptions, with regard to material properties, resulting in approxi-
mate expressions for elastic constants. The accuracy of these approximations is generally the most
significant factor in the orthotropic plate problem. Approximate rigidities for some cases that are
commonly encountered in practice are given in Figure 2.38.

General solution procedures applicable to the case of isotropic plates are equally applicable to the
orthotropic plates as well. Deflections and stress-resultants can thus be obtained for orthotropic
plates of different shapes with different support and loading conditions. These problems have been
researched extensively and solutions concerning plates of various shapes under different boundary
and loading conditions may be found in the references, namely [37, 52, 53, 56, 57].

2.5.8 Buckling of Thin Plates

Rectangular Plates

Buckling of a plate involves bending in two planes and is therefore fairly complicated. From
a mathematical point of view, the main difference between columns and plates is that quantities
such as deflections and bending moments, which are functions of a single independent variable, in
columns become functions of two independent variables in plates. Consequently, the behavior of
plates is described by partial differential equations, whereas ordinary differential equations suffice
for describing the behavior of columns. A significant difference between columns and plates is also
apparent if one compares their buckling characteristics. For a column, buckling terminates the ability
of the member to resist axial load, and the critical load is thus the failure load of the member. However,
the same is not true for plates. These structural elements can, subsequently to reaching the critical
load, continue to resist increasing axial force, and they do not fail until a load considerably in excess
of the critical load is reached. The critical load of a plate is, therefore, not its failure load. Instead,
one must determine the load-carrying capacity of a plate by considering its postbuckling behavior.

To determine the critical in-plane loading of a plate by the concept of neutral equilibrium, a
governing equation in terms of biaxial compressive forces Nx and Ny and constant shear force Nxy
as shown in Figure 2.39 can be derived as

D

(
δ4w

δx4
+ 2

δ4w

δx2δy2
+ δ4w

δy4

)
+Nx

δ2w

δx2
+Ny

δ2w

δy2
+ 2Nxy

δ2w

δxδy
= 0 (2.90)
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FIGURE 2.38: Various orthotropic plates.

The critical load for uniaxial compression can be determined from the differential equation

D

(
δ4w

δx4
+ 2

δ4w

δx2δy2
+ δ4w

δy4

)
+Nx

δ2w

δx2
= 0 (2.91)

which is obtained by setting Ny = Nxy = 0 in Equation 2.90.
For example, in the case of a simply supported plate Equation 2.91 can be solved to give

Nx = π2a2D

m2

(
m2

a2
+ n2

b2

)2

(2.92)
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FIGURE 2.39: Plate subjected to in-plane forces.

The critical value ofNx , i.e., the smallest value, can be obtained by taking n equal to 1. The physical
meaning of this is that a plate buckles in such a way that there can be several half-waves in the direction
of compression but only one half-wave in the perpendicular direction. Thus, the expression for the
critical value of the compressive force becomes

(Nx)cr = π2D

a2

(
m+ 1

m

a2

b2

)2

(2.93)

The first factor in this expression represents the Euler load for a strip of unit width and of length a.
The second factor indicates in what proportion the stability of the continuous plate is greater than
the stability of an isolated strip. The magnitude of this factor depends on the magnitude of the ratio
a/b and also on the number m, which gives the number of half-waves into which the plate buckles.
If ‘a’ is smaller than ‘b’, the second term in the parenthesis of Equation 2.93 is always smaller than
the first and the minimum value of the expression is obtained by takingm = 1, i.e., by assuming that
the plate buckles in one half-wave. The critical value ofNx can be expressed as

Ncr = kπ2D

b2
(2.94)

The factor k depends on the aspect ratio a/b of the plate andm, the number of half-waves into which
the plate buckles in the x direction. The variation of k with a/b for different values of m can be
plotted, as shown in Figure 2.40. The critical value of Nx is the smallest value that is obtained for
m = 1 and the corresponding value of k is equal to 4.0. This formula is analogous to Euler’s formula
for buckling of a column.

In the more general case in which normal forcesNx andNy and the shearing forcesNxy are acting
on the boundary of the plate, the same general method can be used. The critical stress for the case of
a uniaxially compressed simply supported plate can be written as

σcr = 4
π2E

12(1 − ν2)

(
h

b

)2

(2.95)

The critical stress values for different loading and support conditions can be expressed in the form

fcr = k
π2E

12(1 − ν2)

(
h

b

)2

(2.96)

in which fcr is the critical value of different loading cases. Values of k for plates with several different
boundary and loading conditions are given in Figure 2.41.
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FIGURE 2.40: Buckling stress coefficients for unaxially compressed plate.

Circular Plates

The critical value of the compressive forces Nr uniformly distributed around the edge of a
circular plate of radius ro, clamped along the edge (Figure 2.42) can be determined by using the
governing equation

r2d
2φ

dr2
+ r

dφ

dr
− φ = −Qr

2

D
(2.97)

in which φ is the angle between the axis of revolution of the plate surface and any normal to the plate,
r is the distance of any point measured from the center of the plate, andQ is the shearing force per
unit of length. When there are no lateral forces acting on the plate, the solution of Equation 2.97
involves a Bessel function of the first order of the first and second kind and the resulting critical value
of Nr is obtained as

(Nr)cr = 14.68D

r2
0

(2.98)

The critical value ofNr for the plate when the edge is simply supported can be obtained in the same
way as

(Nr)cr = 4.20D

r2
0

(2.99)

2.6 Shell

2.6.1 Stress Resultants in Shell Element

A thin shell is defined as a shell with a thickness that is relatively small compared to its other dimen-
sions. Also, deformations should not be large compared to the thickness. The primary difference
between a shell structure and a plate structure is that the former has a curvature in the unstressed
state, whereas the latter is assumed to be initially flat. The presence of initial curvature is of little
consequence as far as flexural behavior is concerned. The membrane behavior, however, is affected
significantly by the curvature. Membrane action in a surface is caused by in-plane forces. These
forces may be primary forces caused by applied edge loads or edge deformations, or they may be
secondary forces resulting from flexural deformations.
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FIGURE 2.41: Values ofK for plate with different boundary and loading conditions.

In the case of the flat plates, secondary in-plane forces do not give rise to appreciable membrane
action unless the bending deformations are large. Membrane action due to secondary forces is,
therefore, neglected in small deflection theory. If the surface, as in the case of shell structures, has an
initial curvature, membrane action caused by secondary in-plane forces will be significant regardless
of the magnitude of the bending deformations.

A plate is likened to a two-dimensional beam and resists transverse loads by two dimensional
bending and shear. A membrane is likened to a two-dimensional equivalent of the cable and resists
loads through tensile stresses. Imagine a membrane with large deflections (Figure 2.43a), reverse
the load and the membrane and we have the structural shell (Figure 2.43b) provided that the shell
is stable for the type of load shown. The membrane resists the load through tensile stresses but the
ideal thin shell must be capable of developing both tension and compression.

Consider an infinitely small shell element formed by two pairs of adjacent planes which are normal
to the middle surface of the shell and which contain its principal curvatures as shown in Figure 2.44a.
The thickness of the shell is denoted as h. Coordinate axes x and y are taken tangent at ‘O’ to the
lines of principal curvature and the axis z normal to the middle surface. rx and ry are the principal
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FIGURE 2.42: Circular plate under compressive loading.

FIGURE 2.43: Membrane with large deflections.

radii of curvature lying in the xz and yz planes, respectively. The resultant forces per unit length of
the normal sections are given as

Nx =
∫ h/2

−h/2
σx

(
1 − z

ry

)
dz, Ny =

∫ h/2

−h/2
σy

(
1 − z

rx

)
dz

Nxy =
∫ h/2

−h/2
τxy

(
1 − z

ry

)
dz, Nyx =

∫ h/2

−h/2
τyx

(
1 − z

rx

)
dz

Qx =
∫ h/2

−h/2
τxz

(
1 − z

ry

)
dz, Qy =

∫ h/2

−h/2
τyz

(
1 − z

rx

)
dz (2.100)

The bending and twisting moments per unit length of the normal sections are given by

Mx =
∫ h/2

−h/2
σxz

(
1 − z

ry

)
dz, My =

∫ h/2

−h/2
σyz

(
1 − z

rx

)
dz

Mxy = −
∫ h/2

−h/2
τxyz

(
1 − z

ry

)
dz, Myx =

∫ h/2

−h/2
τyxz

(
1 − z

rx

)
dz (2.101)

It is assumed, in bending of the shell, that linear elements as AD and BC (Figure 2.44), which
are normal to the middle surface of the shell, remain straight and become normal to the deformed
middle surface of the shell. If the conditions of a shell are such that bending can be neglected, the
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FIGURE 2.44: A shell element.

problem of stress analysis is greatly simplified because the resultant moments (Equation2.101) vanish
along with shearing forcesQx andQy in Equation 2.100. Thus, the only unknowns areNx,Ny , and
Nxy = Nyx and these are called membrane forces.

2.6.2 Membrane Theory of Shells of Revolution

Shells having the form of surfaces of revolution find extensive application in various kinds of con-
tainers, tanks, and domes. Consider an element of a shell cut by two adjacent meridians and two
parallel circles as shown in Figure 2.45. There will be no shearing forces on the sides of the element
because of the symmetry of loading. By considering the equilibrium in the direction of the tangent
to the meridian and z, two equations of equilibrium are written, respectively, as

d

dφ
(Nφr0)−Nθr1 cosφ + Yr1r0 = 0

Nφr0 +Nθr1 sinφ + Zr1r0 = 0 (2.102)

The forceNθ andNφ can be calculated from Equation 2.102 if the radii r0 and r1 and the components
Y and Z of the intensity of the external load are given.

2.6.3 Spherical Dome

The spherical shell shown in Figure 2.46 is assumed to be subjected to its own weight; the intensity
of the self weight is assumed as a constant value qo per unit area. Considering an element of the shell
at an angle φ, the self weight of the portion of the shell above this element is obtained as

r = 2π
∫ φ

0
a2qo sinφdφ
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FIGURE 2.45: An element from shells of revolution—symmetrical loading.

FIGURE 2.46: Spherical dome.

= 2πa2qo(1 − cosφ)

Considering the equilibrium of the portion of the shell above the parallel circle defined by the angle
φ, we can write

2πr0Nφ sinφ + R = 0 (2.103)

Therefore,

Nφ = −aq(1 − cosφ)

sin2 φ
= − aq

1 + cosφ

We can write from Equation 2.102
Nφ

r1
+ Nθ

r2
= −Z (2.104)

Substituting for Nφ and R into Equation 2.104

Nθ = −aq
(

1

1 + cosφ
− cosφ

)
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It is seen that the forces Nφ are always negative. Thus, there is a compression along the meridians
that increases as the angle φ increases. The forcesNθ are also negative for small angles φ. The stresses
as calculated above will represent the actual stresses in the shell with great accuracy if the supports
are of such a type that the reactions are tangent to meridians as shown in the figure.

2.6.4 Conical Shells

If a force P is applied in the direction of the axis of the cone as shown in Figure 2.47, the stress
distribution is symmetrical and we obtain

Nφ = − P

2πr0 cosα

By Equation 2.104, one obtains Nθ = 0.

FIGURE 2.47: Conical shell.

In the case of a conical surface in which the lateral forces are symmetrically distributed, the
membrane stresses can be obtained by using Equations 2.103 and 2.104. The curvature of the
meridian in the case of a cone is zero and hence r1 = ∞; Equations 2.103 and 2.104 can, therefore,
be written as

Nφ = − R

2πr0 sinφ

and

Nθ = −r2Z = − Zr0

sinφ

If the load distribution is given, Nφ and Nθ can be calculated independently.
For example, a conical tank filled with a liquid of specific weight γ is considered as shown in

Figure 2.48. The pressure at any parallel circlemn is

p = −Z = γ (d − y)

For the tank, φ = α + π
2 and r0 = y tanα.

Therefore,

Nθ = γ (d − y)y tanα

cosα
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FIGURE 2.48: Inverted conical tank.

Nθ is maximum when y = d
2 and hence

(Nθ )max = γ d2 tanα

4 cosα

The term R in the expression for Nφ is equal to the weight of the liquid in the conical part mno
and the cylindrical part must be as shown in Figure 2.47. Therefore,

R = −
[

1

3
πy3 tan2 α + πy2(d − y) tan2 α

]
γ

= −πγy2
(
d − 2

3
y

)
tan2 α

Hence,

Nφ =
γy
(
d − 2

3y
)

tanα

2 cosα

Nφ is maximum when y = 3
4d and

(Nφ)max = 3

16

d2γ tanα

cosα

The horizontal component of Nφ is taken by the reinforcing ring provided along the upper edge of
the tank. The vertical components constitute the reactions supporting the tank.

2.6.5 Shells of Revolution Subjected to Unsymmetrical Loading

Consider an element cut from a shell by two adjacent meridians and two parallel circles (Figure 2.49).
In the general case, shear forces Nϕθ = Nθϕ in addition to normal forces Nϕ and Nθ will act on the
sides of the element. Projecting the forces on the element in the y direction we obtain the equation

∂

∂ϕ
(Nϕr0)+ ∂Nθϕ

∂θ
r1 −Nθr1 cosϕ + Yr1r0 = 0 (2.105)

Similarly the forces in the x direction can be summed up to give

∂

∂ϕ
(r0Nϕθ )+ ∂Nθ

∂θ
r1 +Nθϕr1 cosϕ +Xr0r1 = 0 (2.106)
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FIGURE 2.49: An element from shells of revolution—unsymmetrical loading.

Since the projection of shearing forces on the z axis vanishes, the third equation is the same as
Equation 2.104. The problem of determining membrane stresses under unsymmetrical loading
reduces to the solution of Equations 2.104, 2.105, and 2.106 for given values of the componentsX, Y ,
and Z of the intensity of the external load.

2.6.6 Membrane Theory of Cylindrical Shells

It is assumed that the generator of the shell is horizontal and parallel to the x axis. An element is cut
from the shell by two adjacent generators and two cross-sections perpendicular to the x axis, and its
position is defined by the coordinate x and the angle ϕ. The forces acting on the sides of the element
are shown in Figure 2.50b.

The components of the distributed load over the surface of the element are denoted asX, Y, and
Z. Considering the equilibrium of the element and summing up the forces in the x direction, we
obtain

∂Nx

∂x
rdϕdx + ∂Nϕx

∂ϕ
dϕdx +Xrdϕdx = 0

The corresponding equations of equilibrium in the y and z directions are given, respectively, as

∂Nxϕ

∂x
rdϕdx + ∂Nϕ

∂ϕ
dϕdx + Yrdϕdx = 0

Nϕdϕdx + Zrdϕdx = 0

The three equations of equilibrium can be simplified and represented in the following form:

∂Nx

∂x
+ 1

r

∂Nxϕ

∂ϕ
= −X

∂Nxϕ

∂x
+ 1

r

∂Nϕ

∂ϕ
= −Y

Nϕ = −Zr (2.107)

In each particular case we readily find the value of Nϕ . Substituting this value in the second of the
equations, we then obtain Nxϕ by integration. Using the value of Nxϕ thus obtained we find Nx by
integrating the first equation.
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FIGURE 2.50: Membrane forces on a cylindrical shell element.

2.6.7 Symmetrically Loaded Circular Cylindrical Shells

In practical applications problems in which a circular shell is subjected to the action of forces dis-
tributed symmetrically with respect to the axis of the cylinder are common. To establish the equations
required for the solution of these problems, we consider an element, as shown in Figures 2.50a and
2.51, and consider the equations of equilibrium. From symmetry, the membrane shearing forces

FIGURE 2.51: Stress resultants in a cylindrical shell element.

Nxϕ = Nϕx vanish in this case; forces Nϕ are constant along the circumference. From symmetry,
only the forces Qz do not vanish. Considering the moments acting on the element in Figure 2.51,
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from symmetry it can be concluded that the twisting momentsMxϕ = Mϕx vanish and the bending
moments Mϕ are constant along the circumference. Under such conditions of symmetry three of
the six equations of equilibrium of the element are identically satisfied. We have to consider only
the equations obtained by projecting the forces on the x and z axes and by taking the moment of
the forces about the y axis. For example, consider a case in which external forces consist only of a
pressure normal to the surface. The three equations of equilibrium are

dN

dx
adxdϕ = 0

dQx

dx
adxdϕ +Nϕdxdϕ + Zadxdϕ = 0

dMx

dx
adxdϕ −Qxadxdϕ = 0 (2.108)

The first one indicates that the forcesNx are constant, and they are taken equal to zero in the further
discussion. If they are different from zero, the deformation and stress corresponding to such constant
forces can be easily calculated and superposed on stresses and deformations produced by lateral load.
The remaining two equations are written in the simplified form:

dQx

dx
+ 1

a
Nϕ = −Z

dMx

dx
−Qx = 0 (2.109)

These two equations contain three unknown quantities: Nϕ,Qx , and Mx . We need, therefore, to
consider the displacements of points in the middle surface of the shell.

The component v of the displacement in the circumferential direction vanishes because of sym-
metry. Only the components u and w in the x and z directions, respectively, are to be considered.
The expressions for the strain components then become

εx = du

dx
εϕ = −w

a
(2.110)

By Hooke’s law, we obtain

Nx = Eh

1 − ν2
(εx + νεϕ) = Eh

1 − ν2

(
du

dx
− ν

w

a

)
= 0

Nϕ = Eh

1 − ν2
(εϕ + νεx) = Eh

1 − ν2

(
−w
a

+ ν
du

dx

)
= 0 (2.111)

From the first of these equation it follows that

du

dx
= ν

w

a

and the second equation gives

Nϕ = −Ehw
a

(2.112)

Considering the bending moments, we conclude from symmetry that there is no change in curvature
in the circumferential direction. The curvature in the x direction is equal to −d2w/dx2. Using the
same equations as for plates, we then obtain

Mϕ = νMx

Mx = −Dd
2w

dx2
(2.113)
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where

D = Eh3

12(1 − ν2)

is the flexural rigidity per unit length of the shell.
EliminatingQx from Equation 2.109, we obtain

d2Mx

dx2
+ 1

a
Nϕ = −Z

from which, by using Equations 2.112 and 2.113, we obtain

d2

dx2

(
D
d2w

dx2

)
+ Eh

a2
w = Z (2.114)

All problems of symmetrical deformation of circular cylindrical shells thus reduce to the integration
of Equation 2.114.

The simplest application of this equation is obtained when the thickness of the shell is constant.
Under such conditions, Equation 2.114 becomes

D
d4w

dx4
+ Eh

a2
w = Z

Using the notation

β4 = Eh

4a2D
= 3(1 − ν2)

a2h2
(2.115)

Equation 2.115 can be represented in the simplified form

d4w

dx4
+ 4β4w = Z

D
(2.116)

The general solution of this equation is

w = eβx(C1 cosβx + C2 sinβx)

+ e−βx(C3 cosβx + C4 sinβx)+ f (x) (2.117)

Detailed treatment of shell theory can be obtained from Timoshenko and Woinowsky-Krieger [56].

2.6.8 Buckling of Shells

If a circular cylindrical shell is uniformly compressed in the axial direction, buckling symmetrical
with respect to the axis of the cylinder (Figure 2.52) may occur at a certain value of the compressive
load. The critical value of the compressive force Ncr per unit length of the edge of the shell can be
obtained by solving the differential equation

D
d4w

dx4
+N

d2w

dx2
+ Eh

w

a2
= 0 (2.118)

in which a is the radius of the cylinder and h is the wall thickness.
Alternatively, the critical force per unit length may also be obtained by using the energy method.

For a cylinder of length L simply supported at both ends one obtains

Ncr = D

(
m2π2

L2
+ EhL2

Da2m2π2

)
(2.119)
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FIGURE 2.52: Buckling of a cylindrical shell.

For each value of m there is a unique buckling mode shape and a unique buckling load. The lowest
value is of greatest interest and is thus found by setting the derivative of Ncr with respect to L equal
to zero form = 1. With Poisson’s Ratio, = 0.3, the buckling load is obtained as

Ncr = 0.605
Eh2

a
(2.120)

It is possible for a cylindrical shell be subjected to uniform external pressure or to the combined action
of axial and uniform lateral pressure. In such cases the mathematical treatment is more involved and
it requires special considerations.

More detailed treatment of such cases may be found in Timoshenko and Gere [55].

2.7 Influence Lines

Structures suchasbridges, industrialbuildingswith travellingcranes, and frames supportingconveyor
belts are subjected to moving loads. Each member of these structures must be designed for the most
severe conditions that can possibly be developed in that member. Live loads should be placed at the
position where they will produce these severe conditions. The critical positions for placing live loads
will not be the same for every member. On some occasions it is possible to determine by inspection
where to place the loads to give the most critical forces, but on many other occasions it is necessary
to resort to certain criteria to find the locations. The most useful of these methods is influence lines.

An influence line for a particular response such as reaction, shear force, bending moment, and
axial force is defined as a diagram the ordinate to which at any point equals the value of that response
attributable to a unit load acting at that point on the structure. Influence lines provide a systematic
procedure for determining how the force in a given part of a structure varies as the applied load moves
about on the structure. Influence lines of responses of statically determinate structures consist only
of straight lines whereas they are curves for statically indeterminate structures. They are primarily
used to determine where to place live loads to cause maximum force and to compute the magnitude of
those forces. The knowledge of influence lines helps to study the structural response under different
moving load conditions.

2.7.1 Influence Lines for Shear in Simple Beams

Figure 2.53 shows influence lines for shear at two sections of a simply supported beam. It is assumed
that positive shear occurs when the sum of the transverse forces to the left of a section is in the upward
direction or when the sum of the forces to the right of the section is downward. A unit force is placed
at various locations and the shear force at sections 1-1 and 2-2 are obtained for each position of the

c©1999 by CRC Press LLC



FIGURE 2.53: Influence line for shear force.

unit load. These values give the ordinate of influence line with which the influence line diagrams for
shear force at sections 1-1 and 2-2 can be constructed. Note that the slope of the influence line for
shear on the left of the section is equal to the slope of the influence line on the right of the section.
This information is useful in drawing shear force influence line in other cases.

2.7.2 Influence Lines for Bending Moment in Simple Beams

Influence lines for bending moment at the same sections, 1-1 and 2-2 of the simple beam considered
in Figure 2.53, are plotted as shown in Figure 2.54. For a section, when the sum of the moments of

FIGURE 2.54: Influence line for bending moment.
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all the forces to the left is clockwise or when the sum to the right is counter-clockwise, the moment
is taken as positive. The values of bending moment at sections 1-1 and 2-2 are obtained for various
positions of unit load and plotted as shown in the figure.

It should be understood that a shear or bending moment diagram shows the variation of shear or
moment across an entire structure for loads fixed in one position. On the other hand, an influence
line for shear or moment shows the variation of that response at one particular section in the structure
caused by the movement of a unit load from one end of the structure to the other.

Influence lines can be used to obtain the value of a particular response for which it is drawn when
the beam is subjected to any particular type of loading. If, for example, a uniform load of intensity
qo per unit length is acting over the entire length of the simple beam shown in Figure 2.53, then the
shear force at section 1-1 is given by the product of the load intensity, qo, and the net area under the
influence line diagram. The net area is equal to 0.3l and the shear force at section 1-1 is, therefore,
equal to 0.3qol. In the same way, the bending moment at the section can be found as the area of the
corresponding influence line diagram times the intensity of loading, qo. The bending moment at the
section is, therefore, (0.08l2 × qo =)0.08qol2.

2.7.3 Influence Lines for Trusses

Influence lines for support reactions and member forces may be constructed in the same manner
as those for various beam functions. They are useful to determine the maximum load that can be
applied to the truss. The unit load moves across the truss, and the ordinates for the responses under
consideration may be computed for the load at each panel point. Member force, in most cases, need
not be calculated for every panel point because certain portions of influence lines can readily be seen
to consist of straight lines for several panels. One method used for calculating the forces in a chord
member of a truss is by the Method of Sections discussed earlier.

The truss shown in Figure 2.55 is considered for illustrating the construction of influence lines for
trusses.

The member forces in U1U2, L1L2, and U1L2 are determined by passing a section 1-1 and con-
sidering the equilibrium of the free body diagram of one of the truss segments. Unit load is placed
at L1 first and the force in U1U2 is obtained by taking moment about L2 of all the forces acting
on the right-hand segment of the truss and dividing the resulting moment by the lever arm (the
perpendicular distance of the force inU1U2 from L2). The value thus obtained gives the ordinate of
the influence diagram at L1 in the truss. The ordinate at L2 obtained similarly represents the force
in U1U2 for unit load placed at L2. The influence line can be completed with two other points, one
at each of the supports. The force in the member L1L2 due to unit load placed at L1 and L2 can
be obtained in the same manner and the corresponding influence line diagram can be completed.
By considering the horizontal component of force in the diagonal of the panel, the influence line for
force in U1L2 can be constructed. Figure 2.55 shows the respective influence diagram for member
forces in U1U2, L1L2, and U1L2. Influence line ordinates for the force in a chord member of a
“curved-chord” truss may be determined by passing a vertical section through the panel and taking
moments at the intersection of the diagonal and the other chord.

2.7.4 Qualitative Influence Lines

One of the most effective methods of obtaining influence lines is by the use of Müller-Breslau’s
principle, which states that “the ordinates of the influence line for any response in a structure are equal
to those of the deflection curve obtained by releasing the restraint corresponding to this response and
introducing a corresponding unit displacement in the remaining structure”. In this way, the shape of
the influence lines for both statically determinate and indeterminate structures can be easily obtained
especially for beams.
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FIGURE 2.55: Influence line for truss.

To draw the influence lines of

1. Support reaction: Remove the support and introduce a unit displacement in the direction
of the corresponding reaction to the remaining structure as shown in Figure 2.56 for a
symmetrical overhang beam.

FIGURE 2.56: Influence line for support reaction.

2. Shear: Make a cut at the section and introduce a unit relative translation (in the direction
of positive shear) without relative rotation of the two ends at the section as shown in
Figure 2.57.

3. Bending moment: Introduce a hinge at the section (releasing the bending moment) and
apply bending (in the direction corresponding to positive moment) to produce a unit
relative rotation of the two beam ends at the hinged section as shown in Figure 2.58.
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FIGURE 2.57: Influence line for midspan shear force.

FIGURE 2.58: Influence line for midspan bending moment.

2.7.5 Influence Lines for Continuous Beams

Using Müller-Breslau’s principle, the shape of the influence line of any response of a continuous beam
can be sketched easily. One of the methods for beam deflection can then be used for determining
the ordinates of the influence line at critical points. Figures 2.59 to 2.61 show the influence lines of
bending moment at various points of two, three, and four span continuous beams.

FIGURE 2.59: Influence lines for bending moments—two span beam.

2.8 Energy Methods in Structural Analysis

Energy methods are a powerful tool in obtaining numerical solutions of statically indeterminate
problems. The basic quantity required is the strain energy, or work stored due to deformations, of
the structure.
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FIGURE 2.60: Influence lines for bending moments—three span beam.

FIGURE 2.61: Influence lines for bending moments—four span beam.

2.8.1 Strain Energy Due to Uniaxial Stress

In an axially loaded bar with constant cross-section, the applied load causes normal stress σy as shown
in Figure 2.62. The tensile stress σy increases from zero to a value σy as the load is gradually applied.
The original, unstrained position of any section such as C − C will be displaced by an amount v.
A section D −D located a differential length below C − C will have been displaced by an amount

v+
(
∂v
∂y

)
dy. As σy varies with the applied load, from zero to σy , the work done by the forces external

to the element can be shown to be

dV = 1

2E
σ 2
y Ady = 1

2
σyεyAdy (2.121)

in which A is the area of cross-section of the bar and εy is the strain in the direction of σy .
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FIGURE 2.62: Axially loaded bar.

2.8.2 Strain Energy in Bending

It can be shown that the strain energy of a differential volume dxdydz stressed in tension or com-
pression in the x direction only by a normal stress σx will be

dV = 1

2E
σ 2
x dxdydz = 1

2
σxεxdxdydz (2.122)

When σx is the bending stress given by σx = My
I

(see Figure 2.63), then dV = 1
2E

M2y2

I2 dxdydz,
where I is the moment of inertia of the cross-sectional area about the neutral axis.

FIGURE 2.63: Beam under arbitrary bending load.

The total strain energy of bending of a beam is obtained as

V =
∫ ∫ ∫

volume

1

2E

M2

I2
y2dzdydx

where

I =
∫ ∫

area
y2dzdy
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Therefore,

V =
∫

length

M2

2EI
dx (2.123)

2.8.3 Strain Energy in Shear

Figure 2.64 shows an element of volume dxdydz subjected to shear stress τxy and τyx .

FIGURE 2.64: Shear loading.

For static equilibrium, it can readily be shown that

τxy = τyx

The shear strain, γ is defined as AB/AC. For small deformations, it follows that

γxy = AB

AC

Hence, the angle of deformation γxy is a measure of the shear strain. The strain energy for this
differential volume is obtained as

dV = 1

2

(
τxydzdx

)
γxydy = 1

2
τxyγxydxdydz (2.124)

Hooke’s Law for shear stress and strain is

γxy = τxy

G
(2.125)

whereG is the shear modulus of elasticity of the material. The expression for strain energy in shear
reduces to

dV = 1

2G
τ2
xydxdydz (2.126)
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2.8.4 The Energy Relations in Structural Analysis

The energy relations or laws such as (1) Law of Conservation of Energy, (2) Theorem of Virtual
Work, (3) Theorem of Minimum Potential Energy, and (4) Theorem of Complementary Energy
are of fundamental importance in structural engineering and are used in various ways in structural
analysis.

The Law of Conservation of Energy

There are many ways of stating this law. For the purpose of structural analysis it will be sufficient
to state it in the following way:

If a structure and the external loads acting on it are isolated so that these neither
receive nor give out energy, then the total energy of this system remains constant.

A typical application of the Law of Conservation of Energy can be made by referring to Figure 2.65
which shows a cantilever beam of constant cross-sections subjected to a concentrated load at its end.
If only bending strain energy is considered,

External work = Internal work
Pδ

2
=

∫ L

0

M2dx

2EI

SubstitutingM = −Px and integrating along the length gives

δ = PL3

3EI
(2.127)

FIGURE 2.65: Cantilever beam.

The Theorem of Virtual Work

The Theorem of Virtual Work can be derived by considering the beam shown in Figure 2.66.
The full curved line represents the equilibrium position of the beam under the given loads. Assume
the beam to be given an additional small deformation consistent with the boundary conditions. This
is called a virtual deformation and corresponds to increments of deflection 1y1,1y2, ..., 1yn at
loads P1, P2, ..., Pn as shown by the broken line.

The change in potential energy of the loads is given by

1(P.E.) =
n∑
i=1

Pi1yi (2.128)

By the Law of Conservation of Energy this must be equal to the internal strain energy stored in the
beam. Hence, we may state the Theorem of Virtual Work in the following form:
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FIGURE 2.66: Equilibrium of a simply supported beam under loading.

If a body in equilibrium under the action of a system of external loads is given
any small (virtual) deformation, then the work done by the external loads during this
deformation is equal to the increase in internal strain energy stored in the body.

The Theorem of Minimum Potential Energy

Let us consider the beam shown in Figure 2.67. The beam is in equilibrium under the action

FIGURE 2.67: Simply supported beam under point loading.

of loads, P1, P2, P3, ..., Pi, ..., Pn. The curve ACB defines the equilibrium positions of the loads
and reactions. Now apply by some means an additional small displacement to the curve so that it is
defined by AC′B. Let yi be the original equilibrium displacement of the curve beneath a particular
load Pi . The additional small displacement is called δyi . The potential energy of the system while
it is in the equilibrium configuration is found by comparing the potential energy of the beam and
loads in equilibrium and in the undeflected position. If the change in potential energy of the loads
isW and the strain energy of the beam is V , the total energy of the system is

U = W + V (2.129)

If we neglect the second-order terms, then

δU = δ(W + V ) = 0 (2.130)

The above is expressed as the Principle or Theorem of Minimum Potential Energy which can be
stated as

Of all displacements satisfying given boundary conditions, those that satisfy the
equilibrium conditions make the potential energy a minimum.
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Castigliano’s Theorem

An example of application of energy methods to the field of structural engineering is Cas-
tigliano’s Theorem. The theorem applies only to structures stressed within the elastic limit. Also,
all deformations must be linear homogeneous functions of the loads. Castigliano’s Theorem can be
derived using the expression for total potential energy as follows: For a beam in equilibrium loaded
as in Figure 2.66, the total energy is

U = −[P1y1 + P2y2 + ...Pj yj + ...Pnyn] + V (2.131)

For an elastic system, the strain energy, V , turns out to be one half the change in the potential energy
of the loads.

V = 1

2

i=n∑
i=1

Piyi (2.132)

Castigliano’s Theorem results from studying the variation in the strain energy, V , produced by a
differential change in one of the loads, say Pj .

If the load Pj is changed by a differential amount δPj and if the deflections y are linear functions
of the loads, then

∂V

∂Pj
= 1

2

i=n∑
i=1

Pi
∂yi

∂Pj
+ 1

2
yj = yj (2.133)

Castigliano’s Theorem is stated as follows:

The partial derivatives of the total strain energy of any structure with respect to any
one of the applied forces is equal to the displacement of the point of application of the
force in the direction of the force.

To find the deflection of a point in a beam that is not the point of application of a concentrated load,
one should apply a load P = 0 at that point and carry the term P into the strain energy equation.
Finally, introduce the true value of P = 0 into the expression for the answer.

EXAMPLE 2.6:

For example, it is required to determine the bending deflection at the free end of a cantilever loaded
as shown in Figure 2.68.

Solution

V =
∫ L

0

M2

2EI
dx

1 = ∂V

∂W1
=
∫ L

0

M

EI

∂M

∂W1
dx

M = W1x 0< x
L

2

= W1x +W2

(
x − `

2

)
L

2
< x < L

1 = 1

EI

∫ `/2

0
W1x × xdx + 1

EI

∫ `

`/2

[
W1x +W2

(
x − `

2

)]
xdx

= W1`
3

24EI
+ 7W1`

3

24EI
+ 5W2`

3

48EI
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FIGURE 2.68: Example 2.6

= W1`
3

3EI
+ 5W2`

3

48EI

Castigliano’s Theorem can be applied to determine deflection of trusses as follows:
We know that the increment of strain energy for an axially loaded bar is given as

dV = 1

2E
σ 2
y Ady

Substituting, σy = S
A

, where S is the axial load in the bar and integrating over the length of the
bar the total strain energy of the bar is given as

V = S2L

2AE
(2.134)

The deflection component1i of the point of application of a load Pi in the direction of Pi is given as

1i = ∂V

∂Pi
= ∂

∂Pi

∑ S2L

2AE
=
∑ S ∂S

∂Pi
L

AE

EXAMPLE 2.7:

Let us consider the truss shown in Figure 2.69. It is required to determine the vertical deflection at
‘g’ of the truss when loaded as shown in the figure. Let us first replace 20 k load at ‘g’ by P and carry
out the calculations in terms of P . At the end, P will be replaced by the actual value, namely 20 k.

A L

Member in.2 ft S δS
δP

n nS δS
δP

L
A

ab 2 25 −(33.3 + 0.83P) −0.83 2 (691+ 17.2P)
af 2 20 (26.7 + 0.67P) 0.67 2 (358+ 9P)
fg 2 20 (26.7 + 0.67P) 0.67 2 (358+ 9P)
bf 1 15 20 0 2 0
bg 1 25 0.83P 0.83 2 34.4P
bc 2 20 −26.7 − 1.33P −1.33 2 (710+ 35.4P)
cg 1 15 0 0 1 0

‘n’ indicates the number of similar members
∑ S δS

δP
L

A
2117+ 105P
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FIGURE 2.69: Example 2.7.

With

P = 20k

1g =
∑ S δS

δP
L

AE
= (2117+ 105× 20)× 12

30× 103
= 1.69 in.

2.8.5 Unit Load Method

The unit load method is a versatile tool in the solution of deflections of both trusses and beams.
Consider an elastic body in equilibrium under loads P1, P2, P3, P4, ...Pn and a load p applied at
point O, as shown in Figure 2.70. By Castigliano’s Theorem, the component of the deflection of

FIGURE 2.70: Elastic body in equilibrium under load.

pointO in the direction of the applied force p is

δop = ∂V

∂p
(2.135)

in which V is the strain energy of the body. It has been shown in Equation 2.123, that the strain
energy of a beam, neglecting shear effects, is given by

V =
∫ L

0

M2

2EI
dx

Also it was shown that if the elastic body is a truss, from Equation 2.134

V =
∑ S2L

2AE
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For a beam, therefore, from Equation 2.135

δop =
∫
L

M ∂M
∂p
dx

EI
(2.136)

and for a truss,

δop =
∑ S ∂S

∂p
L

AE
(2.137)

The bending momentsM and the axial forces S are functions of the load p as well as of the loads
P1, P2, ...Pn. Let a unit load be applied atO on the elastic body and the corresponding moment be
m if the body is a beam, and the forces in the members of the body be u if the body is a truss. For the
body in Figure 2.70, the moments M and the forces S due to the system of forces P1, P2, ...Pn and
p atO applied separately can be obtained by superposition as

M = Mp + pm (2.138)

S = Sp + pu (2.139)

in whichMP and SP are, respectively, moments and forces produced by P1, P2, ...Pn.

Then

∂M

∂p
= m = moments produced by a unit load at O (2.140)

∂S

∂p
= u = stresses produced by a unit load at O (2.141)

Using Equations 2.140 and 2.141 in Equations 2.136 and 2.137, respectively,

δop =
∫
L

Mmdx

EI
(2.142)

δop =
∑ SuL

AE
(2.143)

EXAMPLE 2.8:

Determine, using the unit load method, the deflection at C of a simple beam of constant cross-
section loaded as shown in Figure 2.71a.

Solution The bending moment diagram for the beam due to the applied loading is shown
in Figure 2.71b. A unit load is applied atC where it is required to determine the deflection as shown
in Figure 2.71c and the corresponding bending moment diagram is shown in Figure 2.71d. Now,
using Equation 2.142, we have

δc =
∫ L

0

Mmdx

EI

= 1

EI

∫ L
4

0
(Wx)

(
3

4
x

)
dx + 1

EI

∫ 3L
4

L
4

(
WL

4

)
1

4
(L− x)dx

+ 1

EI

∫ L

3L
4

W(L− x)
1

4
(L− x)dx

= WL3

48EI

Further details on energy methods in structural analysis may be found in [10].
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FIGURE 2.71: Example 2.8.

2.9 Matrix Methods

In this method of structural analysis, a set of simultaneous equations that describe the load-
deformation characteristics of the structure under consideration are formed. These equations are
solved using the matrix algebra to obtain the load-deformation characteristics of discrete or finite
elements into which the structure has been subdivided. Matrix algebra is ideally suited for setting up
and solving equations on the computer. Matrix structural analysis has two methods of approach. The
first is called the flexibility method in which forces are used as independent variables and the second is
called the stiffness method; the second method employs deformations as the independent variables.
The two methods are also called the force method and the displacement method, respectively.

2.9.1 Flexibility Method

In a structure, the forces and displacements are related to one another by using stiffness influence
coefficients. Let us consider, for example, a simple beam in which three concentrated loadsW1,W2,
andW3 are applied at sections 1, 2, and 3, respectively as shown in Figure 2.72. Now, the deflection
at section 1,11 can be expressed as

11 = F11W1 + F12W2 + F13W3

in which F11, F12, and F13 are called flexibility coefficients and they are, respectively, defined as the
deflection at section 1 due to unit loads applied at sections 1, 2, and 3. Deflections at sections 2 and 3
are similarly given as

12 = F21W1 + F22W2 + F23W3
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FIGURE 2.72: Simple beam under concentrated loads.

and
13 = F31W1 + F32W2 + F33W3 (2.144)

These expressions are written in the matrix form as

11
12
13


 =


 F11 F12 F13
F21 F22 F23
F31 F32 F33





W1
W2
W3




(or)
{1} = [F ]{W } (2.145)

The matrix [F ] is called the flexibility matrix. It can be shown, by applying Maxwell’s reciprocal
theorem [10], that the matrix {F } is a symmetric matrix.

The flexibility matrix for a cantilever beam loaded as shown in Figure 2.73 can be constructed as
follows.

The first column in the flexibility matrix can be generated by applying a unit vertical load at the
free end of the cantilever as shown in Figure 2.73b and making use of the moment area method. We
get

F11 = 8L3

3EI
, F21 = 2L2

EI
, F31 = 5L3

6EI
, F41 = 3L2

2EI
Columns 2, 3, and 4 are, similarly, generated by applying unit moment at the free end and unit force
and unit moment at the mid-span as shown in Figures 2.73c, d, and e, respectively. Combining the
results thus obtained, one gets the flexibility matrix as



11
12
13
14


 = 1

EI




8L3

3 2L2 5L3

6
3L2

2

2L2 2L L2

2 L
5L3

6
L2

2
L3

3
L2

2
3L2

2 L L2

2 L





W1
W2
W3
W4


 (2.146)

The above method to generate the flexibility matrix for a given structure is extremely impractical.
It is therefore recommended to subdivide a given structure into several elements and to form the
flexibility matrix for each of the elements. The flexibility matrix for the entire structure is then
obtained by combining the flexibility matrices of the individual elements.

Force transformation matrix relates what occurs in these elements to the behavior of the entire
structure. Using the conditions of equilibrium, it relates the element forces to the structure forces.
The principle of conservation of energy may be used to generate transformation matrices.

2.9.2 Stiffness Method

Forces and deformations in a structure are related to one another by means of stiffness influence
coefficients. Let us consider, for example, a simply supported beam subjected to end momentsW1
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FIGURE 2.73: Cantilever beam.

andW2 applied at supports 1 and 2 and let the respective rotations be denoted as11 and12 as shown
in Figure 2.74. We can now write the expressions for end momentsW1 andW2 as

W1 = K1111 +K1212

W2 = K2111 +K2212 (2.147)

in which K11 andK12 are called stiffness influence coefficients defined as moments at 1 due to unit
rotation at 1 and 2, respectively. The above equations can be written in matrix form as

{
W1
W2

}
=
[
K11 K12
K21 K22

]{
11
12

}

or

{W } = [K]{1} (2.148)

Thematrix [K] is referred toas stiffnessmatrix. It canbe shownthat theflexibilitymatrixof a structure
is the inverse of the stiffness matrix and vice versa. The stiffness matrix of the whole structure is
formed out of the stiffness matrices of the individual elements that make up the structure.
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FIGURE 2.74: Simply supported beam.

2.9.3 Element Stiffness Matrix

Axially Loaded Member

Figure 2.75 shows an axially loaded member of constant cross-sectional area with element
forces q1 and q2 and displacements δ1 and δ2. They are shown in their respective positive directions.

FIGURE 2.75: Axially loaded member.

With unit displacement δ1 = 1 at node 1, as shown in Figure 2.75, axial forces at nodes 1 and 2 are
obtained as

K11 = EA

L
, K21 = −EA

L

In the same way by setting δ2 = 1 as shown in Figure 2.75 the corresponding forces are obtained as

K12 = −EA
L
, K22 = EA

L
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The stiffness matrix is written as{
q1
q2

}
=
[
K11 K12
K21 K22

]{
δ1
δ2

}

or {
q1
q2

}
= EA

L

[
1 −1

−1 1

]{
δ1
δ2

}
. (2.149)

Flexural Member

The stiffness matrix for the flexural element shown in Figure 2.76 can be constructed as fol-
lows. The forces and the corresponding displacements, namely the moments, the shears, and the

FIGURE 2.76: Beam element—stiffness matrix.

corresponding rotations and translations at the ends of the member, are defined in the figure. The
matrix equation that relates these forces and displacements can be written in the form


q1
q2
q3
q4


 =



K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44





δ1
δ2
δ3
δ4



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The terms in the first column consist of the element forcesq1 throughq4 that result from displacement
δ1 = 1 when δ2 = δ3 = δ4 = 0. This means that a unit vertical displacement is imposed at the
left end of the member while translation at the right end and rotation at both ends are prevented as
shown in Figure 2.76. The four member forces corresponding to this deformation can be obtained
using the moment-area method.

The change in slope between the two ends of the member is zero and the area of theM/EI diagram
between these point must, therefore, vanish. Hence,

K41L

2EI
− K21L

2EI
= 0

and
K21 = K41 (2.150)

The moment of theM/EI diagram about the left end of the member is equal to unity. Hence,

K41L

2EI

(
2L

3

)
− K21L

2EI

(
L

3

)
= 1

and in view of Equation 2.150,

K41 = K21 = 6EI

L2

Finally, moment equilibrium of the member about the right end leads to

K11 = K21 +K41

L
= 12EI

L3

and from equilibrium in the vertical direction we obtain

K31 = K11 = 12EI

L3

The forces act in the directions indicated in Figure 2.76b. To obtain the correct signs, one must
compare the forces with the positive directions defined in Figure 2.76a. Thus,

K11 = 12EI

L3
, K21 = −6EI

L2
, K31 = −12EI

L3
, K41 = −6EI

L2

The second column of the stiffness matrix is obtained by letting δ2 = 1 and setting the remaining
three displacements equal to zero as indicated in Figure 2.76c. The area of the M/EI diagram
between the ends of the member for this case is equal to unity, and hence,

K22L

2EI
− K42L

2EI
= 1

The moment of theM/EI diagram about the left end is zero, so that

K22L

2EI

(
L

3

)
− K42L

2EI

(
2L

3

)
= 0

Therefore, one obtains

K22 = 4EI

L
, K42 = 2EI

L

From vertical equilibrium of the member,

K12 = K32
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and moment equilibrium about the right end of the member leads to

K12 = K22 +K42

L
= 6EI

L2

Comparison of the forces in Figure 2.76c with the positive directions defined in Figure 2.76a indicates
that all the influence coefficients except k12 are positive. Thus,

K12 = −6EI

L2
, K22 = 4EI

L
, K32 = 6EI

L2
, K42 = 2EI

L

Using Figures 2.76d and e, the influence coefficients for the third and fourth columns can be
obtained. The results of these calculations lead to the following element-stiffness matrix:



q1
q2
q3
q4


 =




12EI
L3 −6EI

L2 −12EI
L3 −6EI

L2

−6EI
L2

4EI
L

6EI
L2

2EI
L

−12EI
L3

6EI
L2

12EI
L3

6EI
L2

−6EI
L2

2EI
L

6EI
L2

4EI
L






δ1
δ2
δ3
δ4


 (2.151)

Note that Equation 2.150 defines the element-stiffness matrix for a flexural member with constant
flexural rigidity EI .

If axial load in a frame member is also considered the general form of an element, then the stiffness
matrix for an element shown in Figure 2.77 becomes




q1
q2
q3
q4
q5
q6




=




EA
L

0 0 −EA
L

0 0

0 12EI
L3 −6EI

L2 0 −12EI
L3 −6EI

L2

0 −6EI
L2

4EI
L

0 6EI
L2

2EI
L

−EI
L

0 0 EI
L

0 0

0 −12EI
L3

6EI
L2 0 12EI

L3
6EI
L2

0 −6EI
L2

2EI
L

0 6EI
L2

4EI
L







δ1
δ2
δ3
δ4
δ5
δ6




(or)
[q] = [kc][δ] (2.152)

FIGURE 2.77: Beam element with axial force.
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2.9.4 Grillages

Another common type of structure is one in which the members all lie in one plane with loads
being applied in the direction normal to this plane. This type of structure is commonly adopted in
building floor systems, bridge decks, ship decks, floors, etc. The grid floor, for purposes of analysis
by using matrix method, can be treated as a space frame. However, the solution can be simplified
by considering the grid member as a planar grid. A typical grid floor is shown in Figure 2.78a.
The significant member forces in a member and the corresponding deformations are as shown in
Figure 2.78b.

FIGURE 2.78: A grid member.

The member stiffness matrix can be written as

K =




GJ
L

0 0 −GJ
L

0 0

0 12EIz
L3

6EIz
L2 0 −12EIz

L3
6EIz
L2

0 6EIz
L2

4EIz
L

0 −6EIz
L2

2EIz
L

0 −GJ
L

0 0 GJ
L

0 0

0 −12EIz
L2 −6EIz

L2 0 12EIz
L3 −6EIz

L2

0 6EIz
L2

2EIz
L

0 −6EIz
L2

4EIz
L




(2.153)

2.9.5 Structure Stiffness Matrix

Equation 2.152 has been expressed in terms of the coordinate system of the individual members.
In a structure consisting of many members there would be as many systems of coordinates as the
number of members. Before the internal actions in the members of the structure can be related,
all forces and deflections must be stated in terms of one single system of axes common to all—the
structure axes. The transformation from element to structure coordinates is carried out separately
for each element and the resulting matrices are then combined to form the structure-stiffness matrix.
A separate transformation matrix [T ] is written for each element and a relation of the form

[δ]n = [T ]n[1]n (2.154)

is written in which [T ]n defines the matrix relating the element deformations of element ‘n’ to the
structure deformations at the ends of that particular element. The element and structure forces are
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related in the same way as the corresponding deformations as

[q]n = [T ]n[W ]n (2.155)

where [q]n contains the element forces for element ‘n’ and [W ]n contains the structure forces at the
extremities of the element. The transformation matrix [T ]n can be used to transform element ‘n’
from its local coordinates to structure coordinates. We know, for an elementn, the force-deformation
relation is given as

[q]n = [k]n[δ]n
Substituting for [q]n and [δ]n from Equations 2.153 and 2.154 one obtains

[T ]n[W ]n = [k]n[T ]n[1]n
or

[W ]n = [T ]−1
n [k]n[T ]n[1]n

= [T ]Tn [k]n[T ]n[1]n
= [K]n[1]n

[K]n = [T ]Tn [k]n[T ]n (2.156)

[K]n is the stiffness matrix which transforms any element ‘n’ from its local coordinate to structure
coordinates. In this way, each element is transformed individually from element coordinate to
structure coordinate and the resulting matrices are combined to form the stiffness matrix for the
entire structure.

Member stiffness matrix [K]n in structure coordinates for a truss member shown in Figure 2.79,
for example, is given as

[K]n = AE

L



λ2µ λµ −λ2 −λµ
λµ µ2 −λµ −µ2

−λ2 −λµ λ2 λµ

−λµ −µ2 λµ µ2




i

j

k

`

(2.157)

in which λ = cosφ and µ = sinφ.

FIGURE 2.79: A grid member.

To construct [K]n for a given member it is necessary to have the values of λ andµ for the member.
In addition, the structure coordinates i, j, k, and ` at the extremities of the member must be known.
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Member stiffness matrix [K]n in structural coordinates for a flexural member shown in Figure 2.80
can be written as

[K]n =


(
λ2 AE

L
+ µ2 12EI

L3

)
(Symmetric)

µλ
(
AE
L

− 12EI
L3

) (
µ2 AE

L
+ λ2 12EI

L3

)

−µ
(

6EI
L2

)
λ
(

6EI
L2

)
4EI
L(

−λ2 AE
L

− µ2 12EI
L3

)
µλ

(
AE
L

− 12EI
L3

)
µ
(

6EI
L2

) (
λ2 AE

L
+ µ2 12EI

L3

)

−µλ
(
AE
L

− 12EI
L3

) (
−µ2 AE

L
− λ2 12EI

L3

)
−λ

(
6EI
L2

)
µλ

(
AE
L

− 12EI
L3

) (
µ2 AE

L
+ λ2 12EI

L3

)

−µ
(

6EI
L2

)
λ
(

6EI
L2

)
2EI
L

µ
(

6EI
L2

)
−λ

(
6EI
L2

)
4EI
L




(2.158)

where λ = cosφ and µ = sinφ.

FIGURE 2.80: A flexural member in global coordinate.

EXAMPLE 2.9:

Determine the displacement at the loaded point of the truss shown in Figure 2.81. Both members
have the same area of cross-section A = 3 in.2 and E = 30× 103 ksi.

The details required to form the element stiffness matrix with reference to structure coordinates
axes are listed below:

Member Length φ λ µ i j k l
1 10ft 90◦ 0 1 1 2 3 4
2 18.9 ft 32◦ 0.85 0.53 1 2 5 6

We now use these data in Equation 2.157 to form [K]n for the two elements.
For member 1,

AE

L
= 3 × 30× 103

120
= 750
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FIGURE 2.81: Example 2.9.

[K]1 =

1 2 3 4


0 0 0 0
0 750 0 −750
0 0 0 0
0 −750 0 750




1
2
3
4

For member 2,

AE

L
= 3 × 30× 103

18.9 × 12
= 397

[K]2 =

1 2 5 6


286 179 −286 −179
179 111 −179 −111

−286 −179 286 179
−179 −111 179 111




1
2
5
6

Combining the element stiffness matrices, [K]1 and [K]2, one obtains the structure stiffness matrix
as follows: 



W1
W2
W3
W4
W5
W6




=




286 179 0 0 −286 −179
179 861 0 −750 −179 −111
0 0 0 0 0 0
0 −750 0 750 0 0

−286 −179 0 0 286 179
−179 −111 0 0 179 111







11
12
13
14
15
16




The stiffness matrix can now be subdivided to determine the unknowns. Let us consider11 and12
the deflections at joint 2 which can be determined in view of13 = 14 = 15 = 16 = 0 as follows:

[
11
12

]
=
[

286 179
179 861

]−1 [ −9
7

]

or

11 = 0.042 in. to the left

12 = 0.0169 in. upward
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EXAMPLE 2.10:

A simple triangular frame is loaded at the tip by 20 kips as shown in Figure 2.82. Assemble the
structure stiffness matrix and determine the displacements at the loaded node.

FIGURE 2.82: Example 2.10.

Member Length (in.) A (in.2) I (in.4) φ λ µ

1 72 2.4 1037 0 1 0

2 101.8 3.4 2933 45◦ 0.707 0.707

For members 1 and 2 the stiffness matrices in structure coordinates can be written by making use
of Equation 2.158.

[K]1 = 103 ×

1 2 3 4 5 6


1 0 0 −1 0 0
0 1 36 0 −1 36
0 36 1728 0 −36 864

−1 0 0 1 0 0
0 −1 −36 0 1 −36
0 36 864 0 −36 1728




1
2
3
4
5
6

and

[K]2 = 103 ×

1 2 3 7 8 9


1 0 −36 −1 0 −36
0 1 36 0 1 36

−36 36 3457 36 −36 1728
−1 0 36 1 0 36
0 1 −36 0 1 −36

−36 36 1728 36 −36 3457




1
2
3
7
8
9

Combining the element stiffness matrices [K]1 and [K]2, one obtains the structure stiffness matrix
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as follows:

[K] = 103 ×




2 0 −36 −1 0 0 −1 0 −36
0 2 72 0 −1 36 0 1 36

−36 72 5185 0 −36 864 36 −36 1728
−1 0 0 1 0 0 0 0 0
0 −1 −36 0 1 −36 0 0 0
0 36 864 0 −36 1728 0 0 0

−1 0 36 0 0 0 1000 0 36
0 1 −36 0 0 0 0 1 −36

−36 36 1728 0 0 0 36 36 3457




1
2
3
4
5
6
7
8
9

The deformations at joints 2 and 3 corresponding to 15 to 19 are zero since joints 2 and 4 are
restrained in all directions. Cancelling the rows and columns corresponding to zero deformations in
the structure stiffness matrix, one obtains the force deformation relation for the structure:

 F1
F2
F3


 =


 2 0 −36

0 2 72
−36 72 5185


× 103


 11
12
13




Substituting for the applied load F2 = −20kips, the deformations are given as


 11
12
13


 =


 2 0 −36

0 2 72
−36 72 5185




−1

× 103


 0

−20
0




or 
 11
12
13


 =


 6.66 in.

−23.334 in.
0.370 rad


× 103

2.9.6 Loading Between Nodes

The problems discussed thus far have involved concentrated forces and moments applied to nodes
only. But real structures are subjected to distributed or concentrated loading between nodes as shown
in Figure 2.83. Loading may range from a few concentrated loads to an infinite variety of uniform

FIGURE 2.83: Loading between nodes.

or nonuniformly distributed loads. The solution method of matrix analysis must be modified to
account for such load cases.

One way to treat such loads in the matrix analysis is to insert artificial nodes, such as p and q as
shown in Figure 2.83. The degrees of freedom corresponding to the additional nodes are added to the
total structure and the necessary additional equations are written by considering the requirements
of equilibrium at these nodes. The internal member forces on each side of nodes p and q must
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equilibrate the external loads applied at these points. In the case of distributed loads, suitable nodes
such as l, m, and n shown in Figure 2.83 are selected arbitrarily and the distributed loads are lumped
as concentrated loads at these nodes. The degrees of freedom corresponding to the arbitrary and real
nodes are treated as unknowns of the problem. There are different ways of obtaining equivalence
between the lumped and the distributed loading. In all cases the lumped loads must be statically
equivalent to the distributed loads they replace.

The method of introducing arbitrary nodes is not a very elegant procedure because the number of
unknown degrees of freedom made the solution procedure laborious. The approach that is of most
general use with the displacement method is one employing the related concepts of artificial joint
restraint, fixed-end forces, and equivalent nodal loads.

2.9.7 Semi-Rigid End Connection

A rigid connection holds unchanged the original angles between intersecting members; a simple con-
nection allows the member end to rotate freely under gravity load, a semi-rigid connection possesses
a moment capacity intermediate between the simple and the rigid. A simplified linear relationship
between the moment m acting on the connection and the resulting connection rotation ψ in the
direction ofm is assumed giving

M = R
EI

L
ψ (2.159)

whereEI andL are the flexural rigidity and length of the member, respectively. The non-dimensional
quantityR, which is a measure of the degree of rigidity of the connection, is called the rigidity index.
For a simple connection, R is zero and for a rigid connection, R is infinity. Considering the semi-
rigidity of joints, the member flexibility matrix for flexure is derived as[

φ1
φ2

]
= L

EI

[
1
3 + 1

R1
−1

6
−1

6
1
3 + 1

R2

][
M1
M2

]
(2.160)

or
[φ] = [F ][M] (2.161)

where φ1 and φ2 are as shown in Figure 2.84.

FIGURE 2.84: A flexural member with semi-rigid end connections.

For convenience, two parameters are introduced as follows:

p1 = 1

1 + 3
R1
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and

p2 = 1

1 + 3
R2

where p1 and p2 are called the fixity factors. For hinged connections, both the fixity factors (p) and
the rigidity index (R) are zero; but for rigid connections, the fixity factor is 1 and the rigidity index
is infinity. Since the fixity factor can only vary from 0 to 1, its use is more convenient in the analyses
of structures with semi-rigid connections.

Equation 2.160 can be rewritten to give

[F ] = L

EI


 1

3p1
−1

6

−1
6

1
3p2


 (2.162)

From Equation 2.162, the modified member stiffness matrix [K] for a member with semi-rigid and
connections expresses the member end moments,M1 andM2, in terms of the member end rotations,
φ1 and φ2, as

[K] = EI

[
k11 k12
k21 k22

]
(2.163a)

Expressions for k11, and k12 = k21 and k22 may be obtained by inverting the [F ] matrix. Thus,

k11 = 12/p2

4/(p1p2)− 1
(2.163b)

k12 = k21 = 6

4(p1p2)− 1
(2.163c)

k22 = 12/p1

4/(p1p2)− 1
(2.163d)

The modified member stiffness matrix [K], as expressed by Equations 2.163 will be needed in the
stiffness method of analysis of frames in which there are semi-rigid member-end connections.

2.10 The Finite Element Method

Many problems that confront the design analyst, in practice, cannot be solved by analytical meth-
ods. This is particularly true for problems involving complex material properties and boundary
conditions. Numerical methods, in such cases, provide approximate but acceptable solutions. Of
the many numerical methods developed before and after the advent of computers, the finite element
method has proven to be a powerful tool. This method can be regarded as a natural extension of the
matrix methods of structural analysis. It can accommodate complex and difficult problems such as
nonhomogenity, nonlinear stress-strain behavior, and complicated boundary conditions. The finite
element method is applicable to a wide range of boundary value problems in engineering and it
dates back to the mid-1950s with the pioneering work by Argyris [4], Clough [21], and others. The
method was first applied to the solution of plane stress problems and extended subsequently to the
solution of plates, shells, and axisymmetric solids.
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2.10.1 Basic Concept

The finite element method is based on the representation of a body or a structure by an assemblage of
subdivisions called finite elements as shown in Figure 2.85. These elements are considered to be con-

FIGURE 2.85: Assemblage of subdivisions.

nected at nodes. Displacement functions are chosen to approximate the variation of displacements
over each finite element. Polynomials are commonly employed to express these functions. Equilib-
rium equations for each element are obtained by means of the principle of minimum potential energy.
These equations are formulated for the entire body by combining the equations for the individual
elements so that the continuity of displacements is preserved at the nodes. The resulting equations
are solved satisfying the boundary conditions in order to obtain the unknown displacements.

The entire procedure of the finite element method involves the following steps: (1) the given body is
subdivided into an equivalent system of finite elements, (2) suitable displacement function is chosen,
(3) element stiffness matrix is derived using variational principle of mechanics such as the principle
of minimum potential energy, (4) global stiffness matrix for the entire body is formulated, (5) the
algebraic equations thus obtained are solved to determine unknown displacements, and (6) element
strains and stresses are computed from the nodal displacements.

2.10.2 Basic Equations from Theory of Elasticity

Figure 2.86 shows the state of stress in an elemental volume of a body under load. It is defined in
terms of three normal stress components σx, σy , and σz and three shear stress components τxy, τyz,
and τzx . The corresponding strain components are three normal strains εx, εy , and εz and three
shear strains γxy, γyz, and γzx . These strain components are related to the displacement components
u, v, and w at a point as follows:

εx = ∂u

∂x
γxy = ∂v

∂x
+ ∂u

∂y

εy = ∂v

∂y
γyz = ∂w

∂y
+ ∂v

∂z

εz = ∂w

∂z
γzx = ∂u

∂z
+ ∂w

∂x
(2.164)

The relationsgiven inEquation2.164arevalid in thecaseof thebodyexperiencing smalldeformations.
If the body undergoes large or finite deformations, higher order terms must be retained.
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FIGURE 2.86: State of stress in an elemental volume.

The stress-strain equations for isotropic materials may be written in terms of the Young’s modulus
and Poisson’s ratio as

σx = E

1 − ν2
[εx + ν(εy + εz)]

σy = E

1 − ν2
[εy + ν(εz + εx)]

σz = E

1 − ν2
[εz + ν(εx + εy)]

τxy = Gγxy, τyz = Gγyz, τzx = Gγzx (2.165)

2.10.3 Plane Stress

When the elastic body is very thin and there are no loads applied in the direction parallel to the
thickness, the state of stress in the body is said to be plane stress. A thin plate subjected to in-plane
loading as shown in Figure 2.87 is an example of a plane stress problem. In this case, σz = τyz =
τzx = 0 and the constitutive relation for an isotropic continuum is expressed as

 σx
σy
σxy


 = E

1 − ν2


 1 ν 0
ν 1 0
0 0 1−ν

2




 εx

εy
γxy


 (2.166)

2.10.4 Plane Strain

The state of plane strain occurs in members that are not free to expand in the direction perpendicular
to the plane of the applied loads. Examples of some plane strain problems are retaining walls, dams,
long cylinder, tunnels, etc. as shown in Figure 2.88. In these problems εz, γyz, and γzx will vanish
and hence,

σz = ν(σx + σy)

The constitutive relations for an isotropic material are written as
 σx
σy
τxy


 = E

(1 + ν)(1 − 2ν)


 (1 − ν) ν 0

ν (1 − ν) 0
0 0 1−2ν

2




 εx

εy
γxy


 (2.167)
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FIGURE 2.87: Plane-stress problem.

FIGURE 2.88: Practical examples of plane-strain problems.

2.10.5 Element Shapes and Discretization

The process of subdividing a continuum is an exercise of engineering judgement. The choice depends
on the geometry of the body. A finite element generally has a simple one-, two-, or three-dimensional
configuration. The boundaries of elements are often straight lines and the elements can be one, two,
or three dimensional as shown in Figure 2.89. While subdividing the continuum, one has to decide
the number, shape, size, and configuration of the elements in such a way that the original body
is simulated as closely as possible. Nodes must be located in locations where abrupt changes in
geometry, loading, and material properties occur. A node must be placed at the point of application
of a concentrated load because all loads are converted into equivalent nodal-point loads.

It is easy to subdivide a continuum into a completely regular one having the same shape and size.
But problems encountered in practice do not involve regular shape; they may have regions of steep
gradients of stresses. A finer subdivision may be necessary in regions where stress concentrations are
expected in order to obtain a useful approximate solution. Typical examples of mesh selection are
shown in Figure 2.90.

2.10.6 Choice of Displacement Function

Selection of displacement function is the important step in the finite element analysis because it
determines the performance of the element in the analysis. Attention must be paid to select a
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FIGURE 2.89: (a) One-dimensional element; (b) two-dimensional elements; (c) three-dimensional
elements.

displacement function which (1) has the number of unknown constants as the total number of
degrees of freedom of the element, (2) does not have any preferred directions, (3) allows the element
to undergo rigid-body movement without any internal strain, (4) is able to represent states of constant
stress or strain, and (5) satisfies the compatibility of displacements along the boundaries with adjacent
elements. Elements that meet both the third and fourth requirements are known as complete elements.

A polynomial is the most common form of displacement function. Mathematics of polynomials
are easy to handle in formulating the desired equations for various elements and convenient in
digital computation. The degree of approximation is governed by the stage at which the function is
truncated. Solutions closer to exact solutions can be obtained by including more number of terms.
The polynomials are of the general form

w(x) = a1 + a2x + a3x
2 + . . . an+1x

n (2.168)

The coefficients ‘a’s are known as generalized displacement amplitudes. The general polynomial
form for a two-dimensional problem can be given as

u(x, y) = a1 + a2x + a3y + a4x
2 + a5xy + a6y

2 + . . . amy
n
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FIGURE 2.90: Typical examples of finite element mesh.

v(x, y) = am+1 + am+2x + am+3y + am+4x
2 + am+5xy

+ am+6y
2 + . . .+ a2my

n

in which

m =
n+1∑
i=1

i (2.169)

These polynomials can be truncated at any desired degree to give constant, linear, quadratic, or
higher order functions. For example, a linear model in the case of a two-dimensional problem can
be given as

u = a1 + a2x + a3y

v = a4 + a5x + a6y (2.170)

A quadratic function is given by

u = a1 + a2x + a3y + a4x
2 + a5xy + a6y

2

v = a7 + a8x + a9y + a10x
2 + a11xy + a12y

2 (2.171)

The Pascal triangle shown below can be used for the purpose of achieving isotropy, i.e., to avoid
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displacement shapes that change with a change in local coordinate system.

1 Constant
x y Linear

x2 xy y2 Quadratic
x3 x2y xy2 y3 Cubic

x4 x3y x2y2 xy3 y4 Quantic
x5 x4y x3y2 x2y3 xy4 y5 Quintic

Line of Symmetry

2.10.7 Nodal Degrees of Freedom

The deformation of the finite element is specified completely by the nodal displacement, rotations,
and/or strains which are referred to as degrees of freedom. Convergence, geometric isotropy, and
potential energy function are the factors that determine the minimum number of degrees of freedom
necessary for a given element. Additional degrees of freedom beyond the minimum number may be
included for any element by adding secondary external nodes. Such elements with additional degrees
of freedom are called higher order elements. The elements with more additional degrees of freedom
become more flexible.

2.10.8 Isoparametric Elements

The scope of finite element analysis is also measured by the variety of element geometries that can
be constructed. Formulation of element stiffness equations requires the selection of displacement
expressions with as many parameters as there are node-point displacements. In practice, for planar
conditions, only the four-sided (quadrilateral) element finds as wide an application as the triangular
element. The simplest form of quadrilateral, the rectangle, has four node points and involves two
displacement components at each point for a total of eight degrees of freedom. In this case one
would choose four-term expressions for both u and v displacement fields. If the description of the
element is expanded to include nodes at the mid-points of the sides, an eight-term expression would
be chosen for each displacement component.

The triangle and rectangle can approximate the curved boundaries only as a series of straight line
segments. A closer approximation can be achieved by means of isoparametric coordinates. These are
non-dimensionalized curvilinear coordinates whose description is given by the same coefficients as
are employed in the displacement expressions. The displacement expressions are chosen to ensure
continuity across element interfaces and along supported boundaries, so that geometric continuity
is ensured when the same forms of expressions are used as the basis of description of the element
boundaries. Theelements inwhich thegeometryanddisplacements aredescribed in termsof the same
parameters and are of the same order are called isoparametric elements. The isoparametric concept
enables one to formulate elements of any order which satisfy the completeness and compatibility
requirements and which have isotropic displacement functions.

2.10.9 Isoparametric Families of Elements

Definitions and Justifications

For example, let ui represent nodal displacements and xi represent nodal x-coordinates. The
interpolation formulas are

u =
m∑
i=1

Niui x =
n∑
i=1

N ′
i xi
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whereNi andN are shape functions written in terms of the intrinsic coordinates. The value of u and
the value of x at a point within the element are obtained in terms of nodal values of ui and xi from
the above equations when the (intrinsic) coordinates of the internal point are given. Displacement
components v and w in the y and z directions are treated in a similar manner.

The element is isoparametric ifm = n,Ni = N , and the same nodal points are used to define both
element geometry and element displacement (Figure 2.91a); the element is subparametric if m > n

FIGURE 2.91: (a) Isoparametric element; (b) subparametric element; (c) superparametric element.

and the order of Ni is larger than N ′
i (Figure 2.91b); the element is superparametric if m < n and

the order of Ni is smaller than N ′
i (Figure 2.91c). The isoparametric elements can correctly display

rigid-body and constant-strain modes.

2.10.10 Element Shape Functions

The finite element method is not restricted to the use of linear elements. Most finite element codes,
commercially available, allow the user to select between elements with linear or quadratic interpo-
lation functions. In the case of quadratic elements, fewer elements are needed to obtain the same
degree of accuracy in the nodal values. Also, the two-dimensional quadratic elements can be shaped
to model a curved boundary. Shape functions can be developed based on the following properties:
(1) each shape function has a value of one at its own node and is zero at each of the other nodes,
(2) the shape functions for two-dimensional elements are zero along each side that the node does not
touch, and (3) each shape function is a polynomial of the same degree as the interpolation equation.
Shape function for typical elements are given in Figures 2.92a and b.

2.10.11 Formulation of Stiffness Matrix

It is possible to obtain all the strains and stresses within the element and to formulate the stiffness
matrix and a consistent load matrix once the displacement function has been determined. This
consistent load matrix represents the equivalent nodal forces which replace the action of external
distributed loads.

As an example, let us consider a linearly elastic element of any of the types shown in Figure 2.93.
The displacement function may be written in the form

{f } = [P ]{A} (2.172)

in which {f } may have two components {u, v} or simply be equal to w, [P ] is a function of x and y
only, and {A} is the vector of undetermined constants. If Equation 2.172 is applied repeatedly to the
nodes of the element one after the other, we obtain a set of equations of the form

{D∗} = [C]{A} (2.173)
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Figure 2.92a Shape functions for typical elements.
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Figure 2.92b Shape functions for typical elements.
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Figure 2.92b (Continued) Shape functions for typical elements.
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FIGURE 2.93: Degrees of freedom. (a) Triangular plane-stress element; (b) triangular bending
element.

in which {D∗} is the nodal parameters and [C] is the relevant nodal coordinates. The undetermined
constants {A} can be expressed in terms of the nodal parameters {D∗} as

{A} = [C]−1{D∗} (2.174)

Substituting Equation 2.174 into Equation 2.172

{f } = [P ][C]−1{D∗} (2.175)

Constructing the displacement function directly in terms of the nodal parameters one obtains

{f } = [L]{D∗} (2.176)

where [L] is a function of both (x, y) and (x, y)i,j,m given by

[L] = [P ][C]−1 (2.177)

The various components of strain can be obtained by appropriate differentiation of the displace-
ment function. Thus,

{ε} = [B]{D∗} (2.178)

[B] is derived by differentiating appropriately the elements of [L] with respect to x and y. The stresses
{σ } in a linearly elastic element are given by the product of the strain and a symmetrical elasticity
matrix [E]. Thus,

{σ } = [E]{ε}
or {σ } = [E][B]{D∗} (2.179)
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The stiffness and the consistent load matrices of an element can be obtained using the principle
of minimum total potential energy. The potential energy of the external load in the deformed
configuration of the element is written as

W = −{D∗}T {Q∗} −
∫
a

{f }T {q}da (2.180)

In Equation 2.180 {Q∗} represents concentrated loads at nodes and {q} represents the distributed
loads per unit area. Substituting for {f }T from Equation 2.176 one obtains

W = −{D∗}T {Q∗} − {D∗}T
∫
a

[L]T {q}da (2.181)

Note that the integral is taken over the area a of the element. The strain energy of the element
integrated over the entire volume v is given as

U = 1

2

∫
v

{ε}T {σ }dv

Substituting for {ε} and {σ } from Equations 2.178 and 2.179, respectively,

U = 1

2
{D∗}T

(∫
v

[B]T [E][B]dv
)

{D∗} (2.182)

The total potential energy of the element is

V = U +W

or

V = 1

2
{D∗}T

(∫
v

[B]T [E][B]dv
)

{D∗} − {D∗}T {Q∗}

− {D∗}T
∫
a

[L]T {q}da (2.183)

Using the principle of minimum total potential energy, we obtain(∫
v

[B]T [E][B]dv
)

{D∗} = {Q∗} +
∫
a

[L]T {q}da

or
[K]{D∗} = {F ∗} (2.184)

where

K] =
∫
v

[B]T [E][B]dv (2.185a)

and

{F ∗} = {Q∗} +
∫
a

[L]T {q}da (2.185b)
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2.10.12 Plates Subjected to In-Plane Forces

The simplest element available in two-dimensional stress analysis is the triangular element. The
stiffness and consistent load matrices of such an element will now be obtained by applying the
equation derived in the previous section.

Consider the triangular element shown in Figure 2.93a. There are two degrees of freedom per
node and a total of six degrees of freedom for the entire element. We can write

u = A1 + A2x + A3y

and
v = A4 + A5x + A6y

expressed as

{f } =
{
u

v

}
=
[

1 x y 0 0 0
0 0 0 1 x y

]



A1
A2
A3
A4
A5
A6




(2.186)

or
{f } = [P ]{A} (2.187)

Once the displacement function is available, the strains for a plane problem are obtained from

εx = ∂u

∂x
εy = ∂v

∂y

and

γxy = ∂u

∂y

∂v

∂x

The matrix [B] relating the strains to the nodal displacement {D∗} is thus given as

[B] = 1

21


 bi 0 bj 0 bm 0

0 ci 0 cj 0 cm
ci bj cj bj cm bm


 (2.188)

bi, ci, etc. are constants related to the nodal coordinates only. The strains inside the element must
all be constant and hence the name of the element.

For derivation of strain matrix, only isotropic material is considered. The plane stress and plane
strain cases can be combined to give the following elasticity matrix which relates the stresses to the
strains

[E] =

 C1 C1C2 0
C1C2 C1 0

0 0 C12


 (2.189)

where
C1 = Ē/(1 − ν2) and C2 = ν for plane stress

and

C1 = Ē(1 − ν)

(1 + ν)(1 − 2ν)
and C2 = ν

(1 − ν)
for plane strain

and for both cases,
C12 = C1(1 − C2)/2
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and Ē = Modulus of elasticity.
The stiffness matrix can now be formulated according to Equation 2.185a

[E][B] = 1

21


 C1 C1C2 0
C1C2 C1 0

0 0 C12




 bi 0 bj 0 bm 0

0 ci 0 cj 0 cm
ci bj cj bj cm bm




where1 is the area of the element.
The stiffness matrix is given by Equation 2.185a as

[K] =
∫
v

[B]T [E][B]dv

The stiffness matrix has been worked out algebraically to be

[K] = h

41




C1b
2
i

+C12c
2
i

C1C2bi ci C1c
2
i

+C12bi ci +C12b
2
i

Symmetrical

C1bibj C1C2bj ci C1b
2
j

+C12ci cj +C12bi cj +C12c
2
j

C1C2bi cj C1ci cj C1C2bj cj C1c
2
j

+C12bj ci +C1bibj +C12bj cj +C12b
2
j

C1bibm C1C2bmci C1bj bm C1C2bmcj C1b
2
m

+C12ci cm +C12bi cm +C12cj cm +C12bj cm +C12c
2
m

C1C2bi cm C1ci cm C1C2bj cm C1cj cm C1C2bmcm C1c
2
m

+C12bmci +C12bibm +C12bmcj +C12bj bm +C12bmcm +C12b
2
m




2.10.13 Beam Element

The stiffness matrix for a beam element with two degrees of freedom (one deflection and one rotation)
can be derived in the same manner as for other finite elements using Equation 2.185a.

The beam element has two nodes, one at each end, and two degrees of freedom at each node, giving
it a total of four degrees of freedom. The displacement function can be assumed as

f = w = A1 + A2x + A3x
2 + A4x

3

i.e.,

f =
[
1 x x2 x3

]


A1
A2
A3
A4




or
f = [P ]{A}

With the origin of the x and y axis at the left-hand end of the beam, we can express the nodal-
displacement parameters as

D∗
1 = (w)x=0 = A1 + A2(0)+ A3(0)

2 + A4(0)
3

D∗
2 =

(
dw

dx

)
x=0

= A2 + 2A3(0)+ 3A4(0)
2

D∗
3 = (w)x=l = A1 + A2(l)+ A3(l)

2 + A4(l)
3

D∗
4 =

(
dw

dx

)
x=l

= A2 + 2A3(l)+ 3A4(l)
2

c©1999 by CRC Press LLC



or
{D∗} = [C]{A}

where
{A} = [C]−1{D∗}

and

[C]−1 =




1 0 0 0
0 1 0 0
−3
l2

−2
l

3
l2

−1
l

2
l3

1
l2

−2
l3

1
l2


 (2.190)

Using Equation 2.190, we obtain
[L] = [P ][C]−1

or

[C]−1 =
[(

1 − 3x2

l2
+ 2x3

l3

)∣∣∣∣
(
x − 2x2

l
+ x3

l2

)∣∣∣∣
(

3x2

l2
− 2x3

l3

)∣∣∣∣
(

−x
2

l
+ x3

l2

)]
(2.191)

Neglecting shear deformation

{ε} = −d
2y

dx2

Substituting Equation 2.178 into Equation 2.191 and the result into Equation 2.179

{ε} =
[∣∣∣∣ 6

l2
− 12x

l3

∣∣∣∣ 4

l
− 6x

l2

∣∣∣∣− 6

l2
+ 12x

l3

∣∣∣∣ 2

l
− 6x

l2

]
{D∗}

or
{ε} = [B]{D∗}

Moment-curvature relationship is given by

M = ĒI

(
−d

2y

dx2

)

where Ē = modulus of elasticity.
We know that {σ } = [E]{ε}, so we have for the beam element

[E] = ĒI

The stiffness matrix can now be obtained from Equation 2.185a written in the form

[K] =
∫ l

0
[B]T [E][B]dx

with the integration over the length of the beam. Substituting for [B] and [E], we obtain

[K] = ĒI

∫ l

0


36
`4 − 144x

`5 + 144x2

`6 symmetrical
24
`3 − 84x

`4 + 72x2

`5
16
`2 − 48x

`3 + 36x2

`4

−36
`4 + 144x

`5 − 144x2

`6
−24
`3 + 84x

`4 − 72x2

`5
36
`4 − 144x

`5 + 144x2

`6

12
`3 − 60x

`4 + 72x2

`5
8
`2 − 36x

`3 + 36x2

`4
−12
`3 + 60x

`4 − 72x2

`5
4
`2 − 24x

`3 + 36x2

`4


 dx

(2.192)
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or

[K] = ĒI




12
`3 symmetrical
6
`2

4
`−12

`3
−6
`2

12
`3

6
`2

2
`

−6
`2

4
`


 (2.193)

2.10.14 Plates in Bendings—Rectangular Element

For the rectangular bending element shown in Figure 2.94 with three degrees of freedom (one

FIGURE 2.94: Rectangular bending element.

deflection and two rotations) at each node, the displacement function can be chosen as a polynomial
with 12 undetermined constants as

{f } = w = A1 + A2x + A3y + A4x
2 + A5xy + A6y

2 + A7x
3

+ A8x
2y + A9xy

2 + A10y
3 + A11x

3y + A12xy
3 (2.194)

or
{f } = {P }{A}

The displacement parameter vector is defined as

{D∗} = {
wi, θxi, θyi

∣∣wj , θxj , θyj ∣∣ wk, θxk, θyk∣∣w`, θx`, θy`}
where

θx = ∂w

∂y
and θy = −∂w

∂x

As in the case of beam it is possible to derive from Equation 2.194 a system of 12 equations relating
{D∗} to constants {A}. The last equation

w = [[L]i |[L]j |[L]k|[L]l
] {D∗} (2.195)
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The curvatures of the plate element at any point (x, y) are given by

{ε} =




−∂2w

∂x2

−∂2w

∂y2

2∂2w
∂x∂y




By differentiating Equation 2.195, we obtain

{ε} = [[B]i |[B]j |[B]k|[B]l
] {D∗} (2.196)

or
{ε} =

∑
r=i,j,k,l

[B]r{D∗}r (2.197)

where

[B]r =




− ∂2

∂x2 [L]r
− − − − −
−∂ 2

∂y2 [L]r
− − − − −
2 ∂2

∂x∂y
[L]r


 (2.198)

and
{D∗}r = {wr, θxr , θyr} (2.199)

For an isotropic slab, the moment-curvature relationship is given by

{σ } = {MxMyMxy} (2.200)

[E] = N


 1 ν 0
ν 1 0
0 0 1−ν

2


 (2.201)

and

N = Ēh3

12(1 − ν2)
(2.202)

For orthotropic slabs with the principal directions of orthotropy coinciding with the x and y axes,
no additional difficulty is experienced. In this case we have

[E] =

 Dx D1 0
D1 Dy 0
0 0 Dxy


 (2.203)

where Dx,D1,Dy , and Dxy are the orthotropic constants used by Timoshenko and Woinowsky-
Krieger [56],

Dx = Exh
3

12(1−νxνy)
Dy = Eyh

3

12(1−νxνy)
D1 = νxEyh

3

12(1−νxνy) = νyExh
3

12(1−νxνy)
Dxy = Gh3

12




(2.204)

where Ex,Ey, νx, νy , andG are the orthotropic material constants, and h is the plate thickness.
Unlike the strain matrix for the plane stress triangle (see Equation 2.188), the stress and strain in

the present element vary with x and y. In general we calculate the stresses (moments) at the four
corners. These can be expressed in terms of the nodal displacements by Equation 2.179 which, for
an isotropic element, takes the form
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


{σ }i
− − −
{σ }j

− − −
{σ }k

− − −
{σ }r




= N
cb




6p−1 + 6νp 4νc −4b −6νp 2νc 0 −6p−1 0 −2b 0 0 0
6p + 6νp−1 4c −4νb −6p 2c 0 −6νp−1 0 −2νb 0 0 0

−(1 − ν) −(1 − ν)b (1 − ν)c (1 − ν) 0 −(1 − ν)c (1 − ν) (1 − ν)b 0 −(1 − ν) 0 0
−

−6νp −2νc 0 6p−1 + 6νp −4νc −4b 0 0 0 −6p−1 0 −2b
−6p −2c 0 6p + 6νp−1 −4c −4νb 0 0 0 −6νp−1 0 −2νb

−(1 − ν) 0 (1 − ν)c (1 − ν) −(1 − ν)b (1 − ν) 0 0 −(1 − ν) (1 − ν)b 0
−−

−6p−1 0 2b 0 0 0 6p−1 + 6νp 4νc 4b −6νp 2νc 0
−6νp−1 0 2b 0 0 0 6p + 6νp−1 4c 4νb −6p 2c 0
−(1 − ν) −(1 − ν)b 0 (1 − ν) 0 0 (1 − ν) (1 − ν)b (1 − ν)c −(1 − νv) 0 −(1 − ν)c

−−
0 0 0 −6p−1 0 2b −6νp −2νc 0 6p−1 + 6νp −4νν 4b
0 0 0 −6νp−1 0 2νb −6p −2c 0 6p + 6νp−1 −4c 4νb

−(1 − ν) 0 0 (1 − ν) −(1 − ν)b 0 (1 − ν) 0 (1 − ν)c −(1 − ν) (1 − ν)b −(1 − ν)c







{D∗}i
− − −−
{D∗}j

− − −−
{D∗}k

− − −−
{D∗}r




(2.205)

where p = c/b.
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The stiffness matrix corresponding to the 12 nodal coordinates can be calculated by

[K] =
∫ b/2

−b/2

∫ c/2

−c/2
[B]T [E][B]dxdy (2.206)

For an isotropic element, this gives

[K∗] = N

15cb
[T ][k̄][T ] (2.207)

where

[T ] =




[Ts] Submatrices not
[Ts] shown are

[Ts] zero
[Ts]


 (2.208)

[Ts] =

 1 0 0

0 b 0
0 0 c


 (2.209)

and [K̄] is given by the matrix shown in Equation 2.210.
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[K̄] =




60p−2 + 60p2

−12ν + 42
− − −

30p2 + 12ν 20p2 − 4ν
+3 +4

− − −
−(30p−2 + 12ν −15ν 20p−2 − 4ν symmetrical

+3) +4
+30p−2 − 60p2 −30p2 + 3ν −15p−2 + 12ν 60p−2 + 60p2

+12ν − 42 −3 +3 −12ν + 42
− − −

30p2 − 3ν 10p2 + ν 0 −(30p2 + 12ν 20p2 − 4ν
+3 −1 +3) +4

− − −
−15p−2 + 12ν 0 10p−2 + 4ν −(30p−2 + 12ν 15ν 20p−2 − 4ν

+3 −4 +3) +4
− − −

−60p−2 + 30p2 15p−2 − 12ν 30p−2 − 3ν −30p−2 − 30p2 15p−2 + 3ν 15p−2 + 3ν 60p−2 + 60p2

+12ν − 42 −3 +3 −12ν + 42 −3 −3 −12ν + 42
− − −

15p−2 − 12ν 10p2 + 4ν 0 −15p2 − 3ν 5p2 − ν 0 30p2 + 12ν 20p2 − 4ν
−3 −4 +3 +1 +3 +4

− − −
−30p−2 + 3ν 0 10p−2 + ν −15p−2 − 3ν 0 5p−2 − ν 30p−2 + 12ν 15ν 20p−2 − 4ν

−3 +3 +3 +1 +3 +4
− − −

−30p−2 + 30p2 −15p−2 − 3ν 15p−2 + 3ν −60p−2 + 30p2 −15p−2 + 12ν 30p−2 − 3ν 30p−2 − 60p2 −30p−2 + 3ν 15p−2 − 12ν 60p−2 + 60p2

−12ν + 42 +3 −3 +12ν − 42 +3 +3 +12ν − 42 −3 −3 −12ν + 42
+3 +3 +3

− − −
15p−2 − 3ν 5p−2 − ν 0 −15p−2 + 12ν 10p−2 + 4ν 0 30p2 + 3ν 10p2 + ν 0 −(30p2 + 12ν 20p2 − 4ν

−3 +1 +3 −4 +3 −1 +3) +4
− − −

−15p−2 − 3ν 0 5p−2 − ν −30p−2 + 3ν 0 10p−2 + ν 15p−2 − 12ν 0 10p−2 + 4ν 30p−2 + 12ν −15ν 20p−2 − 4ν
−3 +1 −3 −1 −3 −4 +3 +4




(2.210)
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If the element is subjected to a uniform load in the z direction of intensity q, the consistent load
vector becomes

{Q∗
q} = q

∫ b/2

−b/2

∫ c/2

−c/2
[L]T dxdy (2.211)

where {Q∗
q} are 12 forces corresponding to the nodal displacement parameters. Evaluating the

integrals in this equation gives

{Q∗
q} = qcb




1/4
b/24

−c/24
− − −

1/4
−b/24
−c/24
− − −

1/4
b/24
c/24

− − −
1/4

−b/24
c/24




(2.212)

More details on the Finite Element Method can be found in [23] and [27].

2.11 Inelastic Analysis

2.11.1 An Overall View

Inelastic analysis can be generalized into two main approaches. The first approach is known as plastic
hinge analysis. The analysis assumes that structural elements remain elastic except at critical regions
where zero-length plastic hinges are allowed to form. The second approach is known as plastic-zone
analysis. The analysis follows explicitly the gradual spread of yielding throughout the volume of the
structure. Material yielding in the member is modeled by discretization of members into several
beam-column elements, and subdivision of the cross-sections into many “fibers”. The plastic-zone
analysis can predict accurately the inelastic response of the structure. However, the plastic hinge
analysis is considered to be more efficient than the plastic-zone analysis since it requires, in most
cases, one beam-column element per member to capture the stability of column members subject to
end loading.

If geometric nonlinear effect is not considered, the plastic hinge analysis predicts the maximum
load of the structure corresponding to the formation of a plastic collapse mechanism [16]. First-order
plastic hinge analysis is finding considerable application in continuous beams and low-rise building
frames where members are loaded primarily in flexure. For tall building frames and for frames with
slender columns subjected to sidesway, the interaction between structural inelasticity and instability
may lead to collapse prior to the formation of a plastic mechanism [54]. If equilibrium equations are
formulated based on deformed geometry of the structure, the analysis is termed second order. The
need for a second-order analysis of steel frame is increasing in view of the American Specifications [3]
which give explicit permission for the engineer to compute load effects from a direct second-order
analysis.

This section presents the virtual work principle to explain the fundamental theorems of plastic
hinge analysis. Simple and approximate techniques of practical plastic analysis methods are then
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introduced. The concept of hinge-by-hinge analysis is presented. The more advanced topics such as
second-order elastic plastic hinge, refined plastic hinge analysis, and plastic zone analysis are covered
in Section 2.12.

2.11.2 Ductility

Plastic analysis is strictly applicable for materials that can undergo large deformation without fracture.
Steel is one such material with an idealized stress-strain curve as shown in Figure 2.95. When steel is

FIGURE 2.95: Idealized stress-strain curve.

subjected to tensile force, it will elongate elastically until the yield stress is reached. This is followed by
an increase in strain without much increase in stress. Fracture will occur at very large deformation.
This material idealization is generally known as elastic-perfectly plastic behavior. For a compact
section, the attainment of initial yielding does not result in failure of a section. The compact section
will have reserved plastic strength that depends on the shape of the cross-section. The capability of
the material to deform under constant load without decrease in strength is the ductility characteristic
of the material.

2.11.3 Redistribution of Forces

The benefit of using a ductile material can be demonstrated from an example of a three-bar system
shown in Figure 2.96. From the equilibrium condition of the system,

2T1 + T2 = P (2.213)

Assuming elastic stress-strain law, the displacement and force relationship of the bars may be written
as:

δ = T1L1

AE
= T2L2

AE
(2.214)

Since L2 = L1/2 = L/2, Equation 2.214 can be written as

T1 = T2

2
(2.215)
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FIGURE 2.96: Force redistribution in a three-bar system: (a) elastic, (b) partially yielded, (c) fully
plastic, (d) load-deflection curve.

where T1 and T2 are the tensile forces in the rods,L1 andL2 are length of the rods,A is a cross-section
area, and E = elastic modulus. Solving Equations 2.214 and 2.215 for T2:

T2 = P

2
(2.216)

The load at which the structure reaches the first yield (in Figure 2.96b) is determined by letting
T2 = σyA. From Equation 2.216:

Py = 2T2 = 2σyA (2.217)

The corresponding displacement at first yield is

δy = εyL = σyL

2E
(2.218)

After Bar 2 is yielded, the system continues to take additional load until all three bars reach their
maximum strength of σyA, as shown in Figure 2.96c. The plastic limit load of the system is thus
written as

PL = 3σyA (2.219)

The process of successive yielding of bars in this system is known as inelastic redistribution of forces.
The displacement at the incipient of collapse is

δL = εyL = σyL

E
(2.220)

Figure 2.96d shows the load-displacement behavior of the system when subjected to increasing
force. As load increases, Bar 2 will reach its maximum strength first. As it yielded, the force in the
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member remains constant, and additional loads on the system are taken by the less critical bars. The
system will eventually fail when all three bars are fully yielded. This is based on an assumption that
material strain-hardening does not take place.

2.11.4 Plastic Hinge

A plastic hinge is said to form in a structural member when the cross-section is fully yielded. If
material strain hardening is not considered in the analysis, a fully yielded cross-section can undergo
indefinite rotation at a constant restraining plastic momentMp .

Most of the plastic analyses assume that plastic hinges are concentrated at zero length plasticity.
In reality, the yield zone is developed over a certain length, normally called the plastic hinge length,
depending on the loading, boundary conditions, and geometry of the section. The hinge lengths
of beams (1L) with different support and loading conditions are shown in Figures 2.97a, b, and c.
Plastic hinges are developed first at the sections subjected to the greatest curvature. The possible

FIGURE 2.97: Hinge lengths of beams with different support and loading conditions.

locations for plastic hinges to develop are at the points of concentrated loads, at the intersections of
members involving a change in geometry, and at the point of zero shear for member under uniform
distributed load.
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2.11.5 Plastic Moment

A knowledge of full plastic moment capacity of a section is important in plastic analysis. It forms the
basis for limit load analysis of the system. Plastic moment is the moment resistance of a fully yielded
cross-section. The cross-section must be fully compact in order to develop its plastic strength. The
component plates of a section must not buckle prior to the attainment of full moment capacity.

The plastic moment capacity, Mp , of a cross-section depends on the material yield stress and the
section geometry. The procedure for the calculation ofMp may be summarized in the following two
steps:

1. The plastic neutral axis of a cross-section is located by considering equilibrium of forces
normal to the cross-section. Figure 2.98a shows a cross-section of arbitrary shape sub-
jected to increasing moment. The plastic neutral axis is determined by equating the force

FIGURE 2.98: Cross-section of arbitrary shape subjected to bending.

in compression (C) to that in tension (T ). If the entire cross-section is made of the same
material, the plastic neutral axis can be determined by dividing the cross-sectional area
into two equal parts. If the cross-section is made of more than one type of material, the
plastic neutral axis must be determined by summing the normal force and letting the
force equal zero.

2. The plastic moment capacity is determined by obtaining the moment generated by the
tensile and compressive forces.

Consider an arbitrary section with area 2A and with one axis of symmetry of which the section
is strengthened by a cover plate of area “a” as shown in Figure 2.98b. Further assume that the yield
strength of the original section and the cover plate is σyo and σyc, respectively. At the full plastic
state, the total axial force acting on the cover plate is aσyc. In order to maintain equilibrium of force
in axial direction, the plastic neutral axis must shift down from its original position by a′, i.e.,

a′ = aσyc

2σyo
(2.221)

The resulting plastic capacity of the “built-up” section may be obtained by summing the full plastic
moment of the original section and the moment contribution by the cover plate. The additional
capacity is equal to the moment caused by the cover plate force aσyc and a force due to the fictitious
stress 2σyo acting on the area a′ resulting from the shifting of plastic neutral axis from tension zone
to compression zone as shown in Figure 2.98c.
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FIGURE 2.99: Plastic moment capacities of sections.
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Figure 2.99 shows the computation of plastic moment capacity of several shapes of cross-section.
Based on the principle developed in this section, the plastic moment capacities of typical cross-
sections may be generated. Additional information for sections subjected to combined bending,
torsion, shear, and axial load can be found in Mrazik et al. [43].

2.11.6 Theory of Plastic Analysis

There are two main assumptions for first-order plastic analysis:

1. The structure is made of ductile material that can undergo large deformations beyond
elastic limit without fracture or buckling.

2. The deflections of the structure under loading are small so that second-order effects can
be ignored.

An “exact” plastic analysis solution must satisfy three basic conditions. They are equilibrium,
mechanism, and plastic moment conditions. The plastic analysis disregards the continuity condition
as required by the elastic analysis of indeterminate structures. The formation of plastic hinge in
members leads to discontinuity of slope. If sufficient plastic hinges are formed to allow the structure
to deform into a mechanism, it is called a mechanism condition. Since plastic analysis utilizes the limit
of resistance of the member’s plastic strength, the plastic moment condition is required to ensure that
the resistance of the cross-sections is not violated anywhere in the structure. Lastly, the equilibrium
condition, which is the same condition to be satisfied in elastic analysis, requires that the sum of all
applied forces and reactions should be equal to zero, and all internal forces should be self-balanced.

When all the three conditions are satisfied, then the resulting plastic analysis for limiting load is the
“correct” limit load. The collapse loads for simple structures such as beams and portal frames can be
solved easily using a direct approach or through visualization of the formation of “correct” collapse
mechanism. However, for more complex structures, the exact solution satisfying all three conditions
may be difficult to predict. Thus, simple techniques using approximate methods of analysis are often
used to assess these solutions. These techniques, called equilibrium and mechanism methods, will
be discussed in the subsequent sections.

Principle of Virtual Work

The virtual work principle may be applied to relate a system of forces in equilibrium to a
system of compatible displacements. For example, if a structure in equilibrium is given a set of small
compatible displacement, then the work done by the external loads on these external displacements
is equal to the work done by the internal forces on the internal deformation. In plastic analysis,
internal deformations are assumed to be concentrated at plastic hinges. The virtual work equation
for hinged structures can be written in an explicit form as∑

Piδj =
∑

Miθj (2.222)

where Pi is an external load andMi is an internal moment at a hinge location. Both the Pi andMi

constitute an equilibrium set and they must be in equilibrium. δj are the displacements under the
point loads Pi and in the direction of the loads. θj are the plastic hinge rotations under the moment
Mi . Both δj and θj constitute a displacement set and they must be compatible with each other.

Lower Bound Theorem

For a given structure, if there exists any distribution of bending moments in the structure that
satisfies both the equilibrium and plastic moment conditions, then the load factor, λL, computed
from this moment diagram must be equal to or less than the collapse load factor, λc, of the structure.
Lower bound theorem provides a safe estimate of the collapse limit load, i.e., λL ≤ λc.
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Upper Bound Theorem

For a given structure subjected to a set of applied loads, a load factor, λu, computed based on
an assumed collapse mechanism must be greater than or equal to the true collapse load factor, λc.
Upper bound theorem, which uses only the mechanism condition, over-estimates or is equal to the
collapse limit load, i.e., λu ≥ λc.

Uniqueness Theorem

A structure at collapse has to satisfy three conditions. First, a sufficient number of plastic hinges
must be formed to turn the structure, or part of it, into a mechanism; this is called the mechanism
condition. Second, the structure must be in equilibrium, i.e., the bending moment distribution must
satisfy equilibrium with the applied loads. Finally, the bending moment at any cross-section must
not exceed the full plastic value of that cross-section; this is called the plastic moment condition. The
theorem simply implies that the collapse load factor, λc, obtained from the three basic conditions
(mechanism, equilibrium, and plastic moment) has a unique value.

The proof of the three theorems can be found in Chen and Sohal [16]. A useful corollary of the
lower bound theorem is that if at a load factor, λ, it is possible to find a bending moment diagram that
satisfies both the equilibrium and moment conditions but not necessarily the mechanism condition,
then the structure will not collapse at that load factor unless the load happens to be the collapse
load. A corollary of the upper bound theorem is that the true load factor at collapse is the smallest
possible one that can be determined from a consideration of all possible mechanisms of collapse.
This concept is very useful in finding the collapse load of the system from various combinations of
mechanisms. From these theorems, it can be seen that the lower bound theorem is based on the
equilibrium approach while the upper bound technique is based on the mechanism approach. These
two alternative approaches to an exact solution, called the equilibrium method and the mechanism
method, will be discussed in the sections that follow.

2.11.7 Equilibrium Method

The equilibrium method, which employs the lower bound theorem, is suitable for the analysis of
continuous beams and frames in which the structural redundancies are not exceeding two. The
procedures for obtaining the equilibrium equations of a statically indeterminate structure and to
evaluate its plastic limit load are as follows:

To obtain the equilibrium equations of a statically indeterminate structure:

1. Select the redundant(s).

2. Free the redundants and draw a moment diagram for the determinate structure under
the applied loads.

3. Draw a moment diagram for the structure due to the redundant forces.

4. Superimpose the moment diagrams in Steps 2 and 3.

5. Obtain the maximum moment at critical sections of the structure utilizing the moment
diagram in Step 4.

To evaluate the plastic limit load of the structure:

6. Select value(s) of redundant(s) such that the plastic moment condition is not violated at
any section in the structure.

7. Determine the load corresponding to the selected redundant(s).
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8. Check for the formation of a mechanism. If a collapse mechanism condition is met, then
the computed load is the exact plastic limit load. Otherwise, it is a lower bound solution.

9. Adjust the redundant(s) and repeat Steps 6 to9until the exactplastic limit load is obtained.

EXAMPLE 2.11: Continuous Beam

Figure 2.100a shows a two-span continuous beam which is analyzed using the equilibrium method.
The plastic limit load of the beam is calculated based on the step-by-step procedure described in the

FIGURE 2.100: Analysis of a two-span continuous using the equilibrium method.

previous section as follows:

1. Select the redundant force as M1 which is the bending moment at the intermediate
support, as shown in Figure 2.100b.

2. Free the redundants and draw the moment diagram for the determinate structure under
the applied loads, as shown in Figure 2.100c.
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3. Draw the moment diagram for the structure due to the redundant momentM1 as shown
in Figure 2.100d.

4. Superimpose the moment diagrams in Figures 2.100c and d. The results are shown in
Figure 2.100e. The moment diagram in Figure 2.100e is redrawn on a single straight base
line. The critical moment in the beam is

Mcr = Pa(L− a)

L
− M1a

L
(2.223)

The maximum moment at the critical sections of the structure utilizing the moment
diagram in Figure 2.100e is obtained. By letting Mcr = Mp , the resulting moment
distribution is shown in Figure 2.100f.

5. A lower bound solution may be obtained by selecting a value of redundant momentM1.
For example, if M1 = 0 is selected, the moment diagram is reduced to that shown in
Figure 2.100c. By equating the maximum moment in the diagram to the plastic moment,
Mp , we have

Mcr = Pa(L− a)

L
= Mp (2.224)

which gives P = P1 as

P1 = MpL

a(L− a)
(2.225)

The moment diagram in Figure 2.100c shows a plastic hinge formed at each span. Since
two plastic hinges in each span are required to form a plastic mechanism, the load P1 is a
lower bound solution. However, if the redundant moment M1 is set equal to the plastic
momentMp , and letting the maximum moment in Figure 2.100f be equal to the plastic
moment, we have

Mcr = Pa(L− a)

L
− Mpa

L
= Mp (2.226)

which gives P = P2 as

P2 = Mp(L+ a)

a(L− a)
(2.227)

6. Since a sufficient number of plastic hinges has formed in the beams (Figure 2.100g) to
arrive at a collapse mechanism, the computed load, P2, is the exact plastic limit load.

EXAMPLE 2.12: Portal Frame

A pinned-base rectangular frame subjected to vertical load V and horizontal load H is shown in
Figure 2.101a. All the members of the frame, AB,BD, and DE are made of the same section with
moment capacityMp . The objective is to determine the limit value ofH if the frame’s width-to-height
ratio L/h is 1.0.
Procedure: The frame has one degree of redundancy. The redundancy for this structure can be chosen
as the horizontal reaction atE. Figures 2.101b and c show the resulting determinate frame loaded by
the applied loads and redundant force. The moment diagrams corresponding to these two loading
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FIGURE 2.101: Analysis of portal frame using the equilibrium method.

conditions are shown in Figures 2.101d and e.
The horizontal reactionS should be chosen in such a manner that all three conditions (equilibrium,

plastic moment, and mechanism) are satisfied. Formation of two plastic hinges is necessary to form
a mechanism. The plastic hinges may be formed at B,C, and D. Assuming that a plastic hinge is
formed atD, as shown in Figure 2.101e, we have

S = Mp

h
(2.228)

Corresponding to this value of S, the moments at B and C can be expressed as

MB = Hh−Mp (2.229)

MC = Hh

2
+ VL

4
−Mp (2.230)

The condition for the second plastic hinge to form at B is |MB | > |MC |. From Equations 2.229 and
2.230 we have

Hh−Mp >
Hh

2
+ VL

4
−Mp (2.231)

and
V

H
<
h

L
(2.232)

The condition for the second plastic hinge to form at C is |MC | > |MB |. From Equations 2.229 and
2.230 we have

Hh−Mp <
Hh

2
+ VL

4
−Mp (2.233)

and
V

H
>
h

L
(2.234)
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For a particular combination of V,H,L, and h, the collapse load for H can be calculated.
(a) When L/h = 1 and V/H = 1/3, we have

MB = Hh−Mp (2.235)

MC = Hh

2
+ Hh

12
−Mp = 7

12
Hh−Mp (2.236)

Since |MB | > |MC |, the second plastic hinge will form at B, and the corresponding value for H is

H = 2Mp

h
(2.237)

(b) When L/h = 1 and V/H = 3, we have

MB = Hh−Mp (2.238)

MC = Hh

2
+ 3

4
Hh−Mp = 5

4
Hh−Mp (2.239)

Since |MC | > |MB |, the second plastic hinge will form at C, and the corresponding value for H is

H = 1.6Mp

h
(2.240)

2.11.8 Mechanism Method

This method, which is based on the upper bound theorem, states that the load computed on the basis
of an assumed failure mechanism is never less than the exact plastic limit load of a structure. Thus,
it always predicts the upper bound solution of the collapse limit load. It can also be shown that the
minimum upper bound is the limit load itself. The procedure for using the mechanism method has
the following two steps:

1. Assume a failure mechanism and form the corresponding work equation from which an
upper bound value of the plastic limit load can be estimated.

2. Write the equilibrium equations for the assumed mechanism and check the moments to
see whether the plastic moment condition is met everywhere in the structure.

To obtain the true limit load using the mechanism method, it is necessary to determine every
possible collapse mechanism of which some are the combinations of a certain number of independent
mechanisms. Once the independent mechanisms have been identified, a work equation may be
established for each combination and the corresponding collapse load is determined. The lowest
load among those obtained by considering all the possible combination of independent mechanisms
is the correct plastic limit load.

Number of Independent Mechanisms

The number of possible independent mechanisms n, for a structure, can be determined from

n = N − R (2.241)

where N is the number of critical sections at which plastic hinges might form, and R is the degrees
of redundancy of the structure.

Critical sections generally occur at the points of concentrated loads, at joints where two or more
members are meeting at different angles, and at sections where there is an abrupt change in section
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FIGURE 2.102: Number of redundants in (a) a beam and (b) a frame.

geometries or properties. To determine the number of redundant Rs of a structure, it is necessary to
free sufficient supports or restraining forces in structural members so that the structure becomes an
assembly of several determinate sub-structures.

Figure 2.102 shows two examples. The cuts that are made in each structure reduce the structural
members to either cantilevers or simply supported beams. The fixed-end beam requires a shear force
and a moment to restore continuity at the cut section, and thus R = 2. For the two-story frame, an
axial force, shear, and moment are required at each cut section for full continuity, and thus R = 12.

Types of Mechanism

Figure 2.103a shows a frame structure subjected to a set of loading. The frame may fail by
different types of collapse mechanisms dependent on the magnitude of loading and the frame’s
configurations. The collapse mechanisms are:

(a) Beam Mechanism: Possible mechanisms of this type are shown in Figure 2.103b.

(b) Panel Mechanism: The collapse mode is associated with sidesway as shown in Fig-
ure 2.103c.

(c) Gable Mechanism: The collapse mode is associated with the spreading of column tops
with respect to the column bases as shown in Figure 2.103d.

(d) Joint Mechanism: The collapse mode is associated with the rotation of joints of which
the adjoining members developed plastic hinges and deformed under an applied moment
as shown in Figure 2.103e.

(e)CombinedMechanism: It canbe apartial collapsemechanismas shown inFigure 2.103f
or it may be a complete collapse mechanism as shown in Figure 2.103g.

The principal rule for combining independent mechanisms is to obtain a lower value of collapse
load. The combinations are selected in such a way that the external work becomes a maximum and
the internal work becomes a minimum. Thus, the work equation would require that the mechanism
involve as many applied loads as possible and at the same time to eliminate as many plastic hinges as
possible. This procedure will be illustrated in the following example.

EXAMPLE 2.13: Rectangular Frame

A fixed-end rectangular frame has a uniform section withMp = 20and carries the load shown in
Figure 2.104. Determine the value of load ratio λ at collapse.
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FIGURE 2.103: Typical plastic mechanisms.

Solution

Number of possible plastic hinges N = 5
Number of redundancies R = 3
Number of independent mechanisms N − R = 2.

The two independent mechanisms are shown in Figures 2.104b and c, and the corresponding work
equations are

Panel mechanism 20λ = 4(20) = 80 ⇒ λ = 4
Beam mechanism 30λ = 4(20) = 80 ⇒ λ = 2.67

The combined mechanisms are now examined to see whether they will produce a lower λ value. It
is observed that only one combined mechanism is possible. The mechanism is shown in Figure 2.104c
involving cancellation of a plastic hinge at B. The calculation of the limit load is described below:

Panel mechanism 20λ = 4(20)
Beam mechanism 30λ = 4(20)
Addition 50λ = 8(20)
Cancellation of plastic hinge −2(20)
Combined mechanism 50λ = 6(20)

⇒ λ = 2.4
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FIGURE 2.104: Collapse mechanisms of a fixed base portal frame.

The combined mechanism results in a smaller value for λ and no other possible mechanism can
produce a lower load. Thus, λ = 2.4 is the collapse load.

EXAMPLE 2.14: Frame Subjected to Distributed Load

When a frame is subjected to distributed loads, the maximum moment and hence the plastic
hinge location is not known in advance. The exact location of the plastic hinge may be determined
by writing the work equation in terms of the unknown distance and then maximizing the plastic
moment by formal differentiation.

Consider the frame shown in Figure 2.105a. The sidesway collapse mode in Figure 2.105b leads to
the following work equation:

4Mp = 24(10θ)

which gives

Mp = 60 kip-ft

The beam mechanism of Figure 2.105c gives

4Mpθ = 1

2
(10θ)32
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FIGURE 2.105: A portal frame subjected to a combined uniform distributed load and a horizontal
load.

which gives
Mp = 40 kip-ft

In fact, the correct mechanism is shown in Figure 2.105d in which the distance Z from the plastic
hinge location is unknown. The work equation is

24(10θ)+ 1

2
(1.6)(20)(zθ) = Mp

(
2 + 2

(
20

20− z

))
θ

which gives

Mp = (240+ 16z)(20− z)

80− 2z
To maximizeMp , the derivative ofMp is set to zero, i.e.,

(80− 2z)(80− 32z)+ (4800+ 80z− 16z2)(2) = 0

which gives
z = 40− √

1100= 6.83 ft
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and
Mp = 69.34 kip-ft

In practice, uniform load is often approximated by applying several equivalent point loads to the
member under consideration. Plastic hinges thus can be assumed to form only at the concentrated
load points, and the calculations become simpler when the structural system becomes more complex.

2.11.9 Gable Frames

The mechanism method is used to determine the plastic limit load of the gable frame shown in
Figure 2.106. The frame is composed of members with plastic moment capacity of 270 kip-in. The
column bases are fixed. The frame is loaded by a horizontal load H and vertical concentrated load
V . A graph from which V andH cause the collapse of the frame is to be produced.

Solution Consider the three modes of collapse as follows:

1. Plastic hinges form at A,C,D, and E
The mechanism is shown in Figure 2.106b. The instantaneous centerO for memberCD
is located at the intersection ofAC andED extended. From similar trianglesACC1 and
OCC2, we have

OC2

CC2
= C1A

C1C

which gives

OC2 = C1A

C1C
CC2 = 22.5(9)

18
= 11.25 ft

From triangles ACC′ and CC′O, we have

AC(φ) = OC(θ)

which gives

φ = OC

AC
θ = CC2

C1C
θ = 9

8
θ = 1

2
θ

Similarly, from trianglesODD′ and EDD′, the rotation at E is given as

DE(9) = OD(θ)

which gives

9 = OD

DE
θ = 1.5θ

From the hinge rotations and displacements, the work equation for this mechanism can
be written as

V (9θ)+H(13.59) = Mp[φ + (φ + θ)+ (θ +9)+9]
Substituting values for ψ and φ and simplifying, we have

V + 2.25H = 180

2. Mechanism with Hinges at B,C,D, and E
Figure2.106c shows themechanisminwhich theplastichinge rotationsanddisplacements
at the load points can be expressed in terms of the rotation of member CD about the
instantaneous centerO.
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FIGURE 2.106: Collapse mechanisms of a fixed base gable frame.
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From similar triangles BCC1 andOCC2, we have

OC2

CC2
= BC1

C1C

which gives

OC2 = BC1

C1C
CC2 = 9

18
(9) = 4.5 ft

From triangles BCC′ and CC′O, we have

BC(φ) = OC(θ)

which gives

φ = OC

BC
θ = OC2

BC1
θ = 4.5

9
θ

1

2
θ

Similarly, from trianglesODD′and EDD′, the rotation at E is given as

DE(9) = OD(θ)

which gives

9 = OD

DE
θ = θ

The work equation for this mechanism can be written as

V (9θ)+H(13.59) = Mp[φ + (φ + θ)+ (θ +9)+9]
Substituting values of ψ and φ and simplifying, we have

V + 1.5H = 150

3. Mechanism with Hinges at A,B,D, and E
The hinge rotations and displacements corresponding to this mechanism are shown in
Figure 2.106d. The rotation of all hinges is θ . The horizontal load moves by 13.5θ but
the horizontal load has no vertical displacement. The work equation becomes

H(13.5θ) = Mp(θ + θ + θ + θ)

or
H = 80 kips

The interaction equations corresponding to the three mechanisms are plotted in Fig-
ure 2.107. By carrying out moment checks, it can be shown that Mechanism 1 is valid
for portion AB of the curve, Mechanism 2 is valid for portion BC, and Mechanism 3 is
valid only when V = 0.

2.11.10 Analysis Charts for Gable Frames

Pinned-Base Gable Frames

Figure 2.108a shows a pinned-end gable frame subjected to a uniform gravity load λwL and
a horizontal load λ1H at the column top. The collapse mechanism is shown in Figure 2.108b. The
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FIGURE 2.107: Vertical load and horizontal force interaction curve for collapse analysis of a gable
frame.

work equation is used to determine the plastic limit load. First, the instantaneousness of rotationO
is determined by considering similar triangles,

OE

CF
= L

xL
and

OE

CF
= OE

h1 + 2xh2
(2.242)

and

OD = OE − h1 = (1 − x)h1 + 2xh2

x
(2.243)

From the horizontal displacement ofD,

θh1 = φOD (2.244)

of which
φ = x

(1 − x)+ 2xk
θ (2.245)

where k = h2/h1. From the vertical displacement at C,

β = 1 − x

(1 − x)+ 2xk
θ (2.246)

The work equation for the assumed mechanism is

λ1Hh1β + λwL2

2
(1 − x)φ = Mp(β + 2φ + θ) (2.247)

which gives

Mp = (1 − x)λ1Hh1 + (1 − x)xλwL2/2

2(1 + kx)
(2.248)

DifferentiatingMp in Equation 2.248 with respect to x and solve for x,

x = A− 1

k
(2.249)
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FIGURE 2.108: Pinned base gable frame subjected to a combined uniform distributed load and
horizontal load.

where

A = √
(1 + k)(1 − Uk) and U = 2λ1Hh1

λwL2
(2.250)

Substituting for x in the expression forMp gives

Mp = λwL2

8

[
U(2 + U)

A2 + 2A− Uk2 + 1

]
(2.251)

In the absence of horizontal loading, the gable mechanism, as shown in Figure 2.108c, is the failure
mode. In this case, letting H = 0 and U = 0 gives [31]:

Mp = λwL2

8

[
1

1 + k + √
1 + k

]
(2.252)

Equation 2.251 can be used to produce a chart as shown in Figure 2.109 by which the value ofMp
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can be determined rapidly by knowing the values of

k = h2

h1
and U = 2λ1Hh1

λwL2
(2.253)

FIGURE 2.109: Analysis chart for pinned base gable frame.

Fixed-Base Gable Frames

Similar charts can be generated for fixed-base gable frames as shown in Figure 2.110. Thus, if
the values of loading, λw and λ1H , and frame geometry, h1, h2, and L, are known, the parameters
k and U can be evaluated and the corresponding value ofMp/(λwL

2) can be read directly from the
appropriate chart. The required value ofMp is obtained by multiplying the value ofMp/(λwL

2) by
λwL2.

2.11.11 Grillages

Grillage is a type of structure consisting of straight beams lying on the same plane, subjected to loads
acting perpendicular to the plane. An example of such structure is shown in Figure 2.111. The
grillage consists of two equal simply supported beams of span length 2L and full plastic momentMp .
The two beams are connected rigidly at their centers where a concentrated loadW is carried.

The collapse mechanism consists of four plastic hinges formed at the beams adjacent to the point
load as shown in Figure 2.111. The work equation is

WLθ = 4Mpθ
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FIGURE 2.110: Analysis chart for fixed base gable frame.

of which the collapse load is

W = 4Mp

L

Six-Beam Grillage

A grillage consisting of six beams of span length 4L each and full plastic momentMp is shown
in Figure 2.112. A total load of 9W acts on the grillage, splitting into concentrated loads W at the
nine nodes. Three collapse mechanisms are possible. Ignoring member twisting due to torsional
forces, the work equations associated with the three collapse mechanisms are computed as follows:

Mechanism 1 (Figure 2.113a)
Work equation 9wLθ = 12Mpθ

of which w = 12
9
Mp
L

= 4Mp
3L

Mechanism 2 (Figure 2.113b)
Work equation wLθ = 8Mpθ

of which w = 8Mp
L

Mechanism 3 (Figure 2.113c)
Work equation w2L2θ + 4 × w2Lθ = Mp(4θ + 8θ)

of which w = Mp
L

The lowest upper bound load corresponds to Mechanism 3. This can be confirmed by conducting
a moment check to ensure that bending moments anywhere are not violating the plastic moment
condition. Additional discussion of plastic analysis of grillages can be found in [6] and [29].
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FIGURE 2.111: Two-beam grillage system.

FIGURE 2.112: Six-beam grillage system.

2.11.12 Vierendeel Girders

Figure 2.114 shows a simply supported girder in which all members are rigidly joined and have the
same plastic moment Mp . It is assumed that axial loads in the members do not cause member
instability. Two possible collapse mechanisms are considered as shown in Figures 2.114b and c. The
work equation for Mechanism 1 is

W3θL = 20Mpθ

so that

W = 20Mp

3L

The work equation for Mechanism 2 is

W3θL = 16Mpθ

or

W = 16Mp

3L

It can be easily proved that the collapse load associated with Mechanism 2 is the correct limit load.
This is done by constructing an equilibrium set of bending moments and checking that they are not
violating the plastic moment condition.

2.11.13 First-Order Hinge-By-Hinge Analysis

Instead of finding the collapse load of the frame, it may be useful to obtain information about the
distribution and redistribution of forces prior to reaching the collapse load. Elastic-plastic hinge
analysis (also known as hinge-by-hinge analysis) determines the order of plastic hinge formation, the
load factor associated with each plastic-hinge formation, and member forces in the frame between
each hinge formation. Thus, the state of the frame can be defined at any load factor rather than only
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FIGURE 2.113: Six-beam grillage system. (a) Mechanism 1. (b) Mechanism 2. (c) Mechanism 3.
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FIGURE 2.114: Collapse mechanisms of a Vierendeel girder.

at the state of collapse. This allows for a more accurate determination of member forces at the design
load level.

Educational and commercial software are now available for elastic-plastic hinge analysis [16]. The
computations of deflections for simple beams and multi-story frames can be done using the virtual
work method [5, 8, 16, 34]. The basic assumption of first-order elastic-plastic hinge analysis is
that the deformations of the structure are insufficient to alter radically the equilibrium equations.
This assumption ceases to be true for slender members and structures, and the method gives unsafe
predictions of limit loads.

2.12 Frame Stability

2.12.1 Categorization of Analysis Methods

Several stability analysis methods have been utilized in research and practice. Figure 2.115 shows
schematic representations of the load-displacement results of a sway frame obtained from each type
of analysis to be considered.

Elastic Buckling Analysis

The elastic buckling load is calculated by linear buckling or bifurcation (or eigenvalue) analysis.
The buckling loads are obtained from the solutions of idealized elastic frames subjected to idealized
loads which do not produce direct bending in the structure. The only displacements that occur
before buckling occurs are those in the directions of the applied loads. When buckling (bifurcation)
occurs, the displacements increase without bound, assuming linearized theory of elasticity and small
displacement as shown by the horizontal straight line in Figure 2.115. The load at which these
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FIGURE 2.115: Categorization of stability analysis methods.

displacements occur is known as the buckling load, or commonly referred to as bifurcation load. For
structural models that actually exhibit a bifurcation from the primary load path, the elastic buckling
load is the largest load that the model can sustain, at least within the vicinity of the bifurcation point,
provided that the post-buckling path is in unstable equilibrium. If the secondary path is in stable
equilibrium, the load can still increase beyond the critical load value.

Buckling analysis is a common tool for calculations of column effective lengths. The effective
length factor of a column member can be calculated using the procedure described in Section 2.12.2.
The buckling analysis provides useful indices of the stability behavior of structures; however, it does
not predict actual behavior of all but idealized structures with gravity loads applied only at the joints.

Second-Order Elastic Analysis

The analysis is formulated based on the deformed configuration of the structure. When derived
rigorously, a second-order analysis can include both the member curvature (P − δ) and the sidesway
(P − 1) stability effects. The P -δ effect is associated with the influence of the axial force acting
through the member displacement with respect to the rotated chord, whereas the P −1 effect is the
influence of axial force acting through the relative sidesway displacements of the member ends. It
is interesting to note that a structural system will become stiffer when its members are subjected to
tension. Conversely, the structure will become softer when its members are in compression. Such
behavior can be illustrated for a simple model shown in Figure 2.116. There is a clear advantage for
a designer to take advantage of the stiffer behavior for tension structures. However, the detrimental
effects associated with second-order deformations due to the compression forces must be considered
in designing structures subjected to predominant gravity loads.

Unlike the first-order analysis in which solutions can be obtained in a rather simple and direct
manner, a second-order analysis often requires an iterative procedure to obtain solutions. Although
second-order analysis can account for all the stability effects, it does not provide information on
the actual inelastic strength of the structure. In design, the combined effects due to stability and
inelasticity must be considered for a proper evaluation of member and system strengths. The load-
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FIGURE 2.116: Behavior of frame in compression and tension.

displacement curve generated from a second-order analysis will gradually approach the horizontal
straight line which represents the buckling load obtained from the elastic buckling analysis, as shown
in Figure 2.115. Differences in the two loads may arise from the fact that the elastic stability limit is
calculated for equilibrium based on the deformed configuration whereas the elastic critical load is
calculated as a bifurcation from equilibrium on the undeformed geometry of the frame.

The load-displacement response of most frame structures usually does not involve any actual
bifurcation or branch from one equilibrium solution to another equilibrium path. In some cases, the
second-order elastic incremental response may not have any limit. The reader is referred to Chapter 1
of [14] for a basic discussion of these behavioral issues.

Recent works on second-order elastic analysis have been reported in Liew et al. [40]; White and
Hajjar [64]; Chen and Lui [15], Liew and Chen [39], and Chen and Kim [17], among others.
Second-order analysis programs which can take into consideration connection flexibility are also
available [1, 24, 26, 28, 30, 41, 42].

Second-Order Inelastic Analysis

Second-order inelastic analysis refers to any method of analysis that can capture geometrical
andmaterial nonlinearities in the analysis. Themost refined inelastic analysismethod is called spread-
of-plasticity analysis. It involves discretization of members into many line segments, and the cross-
section of each segment into a number of finite elements. Inelasticity is captured within the cross-
sections and along the member length. The calculation of forces and deformations in the structure
after yielding requires iterative trial-and-error processes because of the nonlinearity of the load-
deformation response, and the change in cross-section effective stiffness at inelastic regions associated
with the increase in the applied loads and the change in structural geometry. Although most of the
plastic-zone analysis methods have been developed for planar analysis [59, 62], three-dimensional
plastic-zone techniques are also available involving various degrees of refinements [12, 20, 60, 63].

The simplest second-order inelastic analysis is the elastic-plastic hinge approach. The analysis
assumes that the element remains elastic except at its ends where zero-length plastic hinges are
allowed to form [15, 18, 19, 41, 42, 45, 66, 69, 70]. Second-order plastic hinge analysis allows
efficient analysis of large scale building frames. This is particularly true for structures in which
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the axial forces in the component members are small and the predominate behavior is associated
with bending actions. Although elastic-plastic hinge approaches can provide essentially the same
load-displacement predictions as second-order plastic-zone methods for many frame problems, they
cannot be classified as advanced analysis for use in frame design. Some modifications to the elastic-
plastic hinge are required to qualify the methods as advanced analysis, and they are discussed in
Section 2.12.8.

Figure 2.115 shows the load-displacement curve (a smooth curve with a descending branch)
obtained from the second-order inelastic analysis. The computed limit load should be close to that
obtained from the plastic-zone analysis.

2.12.2 Columns Stability

Stability Equations

The stability equation of a column can be obtained by considering an infinitesimal deformed
segment of the column as shown in Figure 2.117. By summing the moment about point b, we obtain

FIGURE 2.117: Stability equations of a column segment.

Qdx + Pdy +M −
(
M + dM

dx
dx

)
= 0

or, upon simplification

Q = dM

dx
− P

dy

dx
(2.254)

Summing force horizontally, we can write

−Q+
(
Q+ dQ

dx
dx

)
= 0

or, upon simplification
dQ

dx
= 0 (2.255)

c©1999 by CRC Press LLC



Differentiating Equation 2.254 with respect to x, we obtain

dQ

dx
= d2M

dx2
− P

d2y

dx2
(2.256)

which, when compared with Equation 2.255, gives

d2M

dx2
− P

d2y

dx2
= 0 (2.257)

SinceM = −EI d2y

dx2 , Equation 2.257 can be written as

EI
d4y

dx4
+ P

d2y

dx2
= 0 (2.258)

or
yIV + k2y′′ = 0 (2.259)

Equation 2.259 is the general fourth-order differential equation that is valid for all support condi-
tions. The general solution to this equation is

y = A sinkx + B coskx + Cx +D (2.260)

To determine the critical load, it is necessary to have four boundary conditions: two at each end of
the column. In some cases, both geometric and force boundary conditions are required to eliminate
the unknown coefficients (A,B,C,D) in Equation 2.260.

Column with Pinned Ends

For a column pinned at both ends as shown in Figure 2.118a, the four boundary conditions
are

y(x = 0) = 0, M(x = 0) = 0 (2.261)

y(x = L) = 0, M(x = L) = 0 (2.262)

SinceM = −EIy′′, the moment conditions can be written as

y′′(0) = 0 and y′′(x = L) = 0 (2.263)

Using these conditions, we have
B = D = 0 (2.264)

The deflection function (Equation 2.260) reduces to

y = A sinkx + Cx (2.265)

Using the conditions y(L) = y′′(L) = 0, Equation 2.265 gives

A sinkL+ CL = 0 (2.266)

and

−Ak2 sinkL = 0 (2.267)[
sinkL L

−k2 sinkL 0

] [
A

C

]
=
[

0
0

]
(2.268)
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FIGURE 2.118: Column with (a) pinned ends, (b) fixed ends, and (c) fixed-free ends.

If A = C = 0, the solution is trivial. Therefore, to obtain a nontrivial solution, the determinant
of the coefficient matrix of Equation 2.268 must be zero, i.e.,

det

∣∣∣∣ sinkL L

−k2 sinkL 0

∣∣∣∣ = 0 (2.269)

or
k2L sinkL = 0 (2.270)

Since k2L cannot be zero, we must have

sinkL = 0 (2.271)

or
kL = nπ, n = 1,2,3, .... (2.272)

The lowest buckling load corresponds to the first mode obtained by setting n = 1:

Pcr = π2EI

L2
(2.273)

Column with Fixed Ends

The four boundary conditions for a fixed-end column are (Figure 2.118b):

y(x = 0) = y′(x = 0) = 0 (2.274)

y(x = L) = y′′′(x = L) = 0 (2.275)

Using the first two boundary conditions, we obtain

D = −B, C = −Ak (2.276)

The deflection function (Equation 2.260) becomes

y = A(sinkx − kx)+ B(coskx − 1) (2.277)
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Using the last two boundary conditions, we have[
sinkL− kL coskL− 1
coskL− 1 − sinkL

] [
A

B

]
=
[

0
0

]
(2.278)

For a nontrivial solution, we must have

det

∣∣∣∣ sinkL− kL coskL− 1
coskL− 1 − sinkL

∣∣∣∣ = 0 (2.279)

or, after expanding
kL sinkL+ 2 coskL− 2 = 0 (2.280)

Using trigonometrical identities sinkL = 2 sin(kL/2) cos(kL/2) and coskL = 1 − 2 sin2(kL/2),
Equation 2.280 can be written as

sin
kL

2

(
kL

2
cos

kL

2
− sin

kL

2

)
= 0 (2.281)

The critical load for the symmetric buckling mode is Pcr = 4π2EI/L2 by letting sin(kL/2) = 0.
The buckling load for the antisymmetric buckling mode isPcr = 80.766EI/L2 by letting the bracket
term in Equation 2.281 equal zero.

Column with One End Fixed and One End Free

The boundary conditions for a fixed-free column are (Figure 2.118c):
at the fixed end

y(x = 0) = y′(x = 0) = 0 (2.282)

and, at the free end, the momentM = EIy′′ is equal to zero

y′′(x = L) = 0 (2.283)

and the shear force V = −dM/dx = −EIy′′′ is equal to Py′ which is the transverse component of
P acting at the free end of the column.

V = −EIy′′′ = Py′ (2.284)

It follows that the shear force condition at the free end has the form

y′′′ + k2y′ = 0 (2.285)

Using the boundary conditions at the fixed end, we have

B +D = 0, and Ak + C = 0 (2.286)

The boundary conditions at the free end give

A sinkL+ B coskL = 0 and C = 0 (2.287)

In matrix form, Equations 2.286 and 2.287 can be written as
 0 1 1

k 0 0
sinkL coskL 0




 A

B

C


 =


 0

0
0


 (2.288)
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For a nontrivial solution, we must have

det

∣∣∣∣∣∣
0 1 1
k 0 0

sinkL coskL 0

∣∣∣∣∣∣ = 0 (2.289)

the characteristic equation becomes
k coskL = 0 (2.290)

Since k cannot be zero, we must have coskL = 0 or

kL = nπ

2
n = 1,3,5, . . . (2.291)

The smallest root (n = 1) gives the lowest critical load of the column

Pcr = π2EI

4L2
(2.292)

The boundary conditions for columns with various end conditions are summarized in Table 2.2.

TABLE 2.2 Boundary Conditions for

Various End Conditions
End conditions Boundary conditions

Pinned y = 0 y′′ = 0

Fixed y = 0 y′ = 0

Guided y′ = 0 y′′′ = 0

Free y′′ = 0 y′′′ + k2y′ = 0

Column Effective Length Factor

The effective length factor, K , of columns with different end boundary conditions can be
obtained by equating the Pcr load obtained from the buckling analysis with the Euler load of a
pinned-ended column of effective lengthKL.

Pcr = π2EI

(KL)2

The effective length factor can be obtained as

K =
√
π2EI/L2

Pcr
(2.293)

The K factor is a factor that can be multiplied to the actual length of the end-restrained column to
give the length of an equivalent pinned-ended column whose buckling load is the same as that of
the end-restrained column. Table 2.3 [2, 3] summarizes the theoretical K factors for columns with
different boundary conditions. Also shown in the table are the recommended K factors for design
applications. The recommended values for design are equal or larger than the theoretical values to
account for semi-rigid effects of the connections used in practice.
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TABLE 2.3 Comparison of Theoretical and DesignK Factors

2.12.3 Beam-Column Stability

Figure 2.119a shows a beam-column subjected to an axial compressive force P at the ends, a lateral
loadw along the entire length and end momentsMA andMB . The stability equation can be derived
by considering the equilibrium of an infinitesimal element of length ds as shown in Figure 2.119b.
The cross-section forces S andH act in the vertical and horizontal directions.

Considering equilibrium of forces

(a) Horizontal equilibrium

H + dH

ds
ds −H = 0 (2.294)

(b) Vertical equilibrium

S + dS

ds
ds − S + wds = 0 (2.295)

(c) Moment equilibrium

M + dM

ds
ds −M −

(
S + dS

ds
+ S

)
cosθ

(
ds

2

)

+
(
H + dH

ds
ds +H

)
sinθ

(
ds

2

)
= 0 (2.296)

Since (dS/ds)ds and (dH/ds)ds are negligibly small compared to S andH , the above equilibrium
equations can be reduced to
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FIGURE 2.119: Basic differential equation of a beam-column.

dH
ds

= 0 (2.297a)

dS
ds

+ w = 0 (2.297b)

dM
ds

− S cosθ +H sinθ = 0 (2.297c)

For small deflections and neglecting shear deformations

ds ∼= dx, cosθ ∼= 1 sinθ ∼= θ ∼= dy

dx
(2.298)

where y is the lateral displacement of the member. Using the above approximations, Equation 2.297
can be written as

dM

dx
− S +H

dy

dx
= 0 (2.299)

Differentiating Equation 2.299 and substituting Equations 2.297a and 2.297b into the resulting
equation, we have

d2M

dx2
+ w +H

d2y

dx2
= 0 (2.300)

From elementary mechanics of materials, it can easily be shown that

M = −EI d
2y

dx2
(2.301)

Upon substitution of Equation 2.301 into Equation 2.300 and realizing thatH = −P , we obtain

EI
d4y

dx4
+ P

d2y

dx2
= w (2.302)

The general solution to this differential equation has the form

y = A sinkx + B coskx + Cx +D + f (x) (2.303)
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where k = √
P/EI and f (x) is a particular solution satisfying the differential equation. The

constants A,B,C, and D can be determined from the boundary conditions of the beam-column
under investigation.

Beam-Column Subjected to Transverse Loading

Figure 2.120 shows a fixed-ended beam-column with uniformly distributed loadw.

FIGURE 2.120: Beam-column subjected to uniform loading.

The general solution to Equation 2.302 is

y = A sinkx + B coskx + Cx +D + w

2EIk2
x2 (2.304)

Using the boundary conditions

yx=0 = 0 y′
x=0 = 0 yx=L = 0 y′

x=L = 0 (2.305)

in which a prime denotes differentiation with respect to x, it can be shown that

A = wL

2EIk3
(2.306a)

B = wL

2EIk3 tan(kL/2)
(2.306b)

C = − wL

2EIk2
(2.306c)

D = − wL

2EIk3 tan(kL/2)
(2.306d)

Upon substitution of these constants into Equation 2.304, the deflection function can be written
as

y = wL

2EIk3

[
sinkx + coskx

tan(kL/2)
− kx − 1

tan(kL/2)
+ kx2

L

]
(2.307)

The maximum moment for this beam-column occurs at the fixed ends and is equal to

Mmax = −EIy′′ |x=0= −EIy′′ |x=L= −wL
2

12

[
3(tanu− u)

u2 tanu

]
(2.308)

where u = kL/2.
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Since wL2/12 is the maximum first-order moment at the fixed ends, the term in the bracket
represents the theoretical moment amplification factor due to the P -δ effect.

For beam-columns with other transverse loading and boundary conditions, a similar approach
can be followed to determine the moment amplification factor. Table 2.4 summarizes the expressions
for the theoretical and design moment amplification factors for some loading conditions [2, 3].

TABLE 2.4 Theoretical and Design Moment Amplification Factor(
u = kL/2 = 1

2

√
(PL2/EI)

)
Boundary
conditions Pcr Location ofMmax Moment amplification factor

Hinged-hinged π2EI
L2 Mid-span 2(secu−1)

u2

Hinged-fixed π2EI
(0.7L)2

End 2(tanu−u)
u2(1/2u−1/ tan 2u)

Fixed-fixed π2EI
(0.5L)2

End 3(tanu−u)
u2 tanu

Hinged-hinged π2EI
L2 Mid-span tanu

u

Hinged-fixed π2EI
(0.7L)2

End 4u(1−cosu)
3u2 cosu(1/2u−1/ tan 2u)

Fixed-fixed π2EI
(0.5L)2

Mid-span and end 2(1−cosu)
u sinu

FIGURE 2.121: Beam-column subjected to end moments.

Beam-Column Subjected to End Moments

Consider the beam-column shown in Figure 2.121. The member is subjected to an axial force
ofP and end momentsMA andMB . The differential equation for this beam-column can be obtained
from Equation 2.302 by setting w = 0:

EI
d4y

dx4
+ P

d2y

dx2
= 0 (2.309)

The general solution is

y = A sinkx + B coskx + Cx +D (2.310)
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The constants A,B,C, andD are determined by enforcing the four boundary conditions

y |x=0= 0, y′′∣∣
x=0 = MA

EI
, y |x=L= 0, y′′∣∣

x=L = −MB

EI
(2.311)

to give

A = MA coskL+MB

EIk2 sinkL
(2.312a)

B = − MA

EIk2
(2.312b)

C = −
(
MA +MB

EIk2L

)
(2.312c)

D = MA

EIk2
(2.312d)

Substituting Equations 2.312 into the deflection function Equation 2.310 and rearranging gives

y = 1

EIk

[
coskL

sinkL
sinkx − coskx − x

L
+ 1

]
MA

+ 1

EIk2

[
1

sinkL
sinkx − x

L

]
MB (2.313)

The maximum moment can be obtained by first locating its position by setting dM/dx = 0 and
substituting the result intoM = −EIy′′ to give

Mmax =
√(
M2
A + 2MAMB coskL+M2

B

)
sinkL

(2.314)

Assuming thatMB is the larger of the two end moments, Equation 2.314 can be expressed as

Mmax = MB



√{
(MA/MB)

2 + 2 (MA/MB) coskL+ 1
}

sinkL


 (2.315)

SinceMB is themaximumfirst-ordermoment, theexpression inbrackets is therefore the theoretical
moment amplification factor. In Equation 2.315, the ratio (MA/MB) is positive if the member is bent
in double (or reverse) curvature and the ratio is negative if the member is bent in single curvature.
A special case arises when the end moments are equal and opposite (i.e., MB = −MA). By setting
MB = −MA = M0 in Equation 2.315, we have

Mmax = M0

[√{2(1 − coskL)}
sinkL

]
(2.316)

For this special case, the maximum moment always occurs at mid-span.

2.12.4 Slope Deflection Equations

The slope-deflection equations of a beam-column can be derived by considering the beam-column
shown in Figure 2.121. The deflection function for this beam-column can be obtained from Equa-
tion 2.313 in terms ofMA andMB as:

y = 1

EIk2

[
coskL

sinkL
sinkx − coskx − x

L
+ 1

]
MA
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+ 1

EIk2

[
1

sinkL
sinkx − x

L

]
MB (2.317)

from which

y′ = 1

EIk

[
coskL

sinkL
coskx + sinkx − 1

kL

]
MA

+ 1

EIk

[
coskx

sinkL
− 1

kL

]
MB (2.318)

The end rotations θA and θB can be obtained from Equation 2.318 as

θA = y′(x = 0) = 1

EIk

[
coskL

sinkL
− 1

kL

]
MA + 1

EIk

[
1

sinkL
− 1

kL

]
MB

= L

EI

[
kL coskL− sinkL

(kL)2 sinkL

]
MA + L

EI

[
kL− sinkL

(kL)2 sinkL

]
MB (2.319)

and

θB = y′(x = L) = 1

EIk

[
1

sinkL
− 1

kL

]
MA + 1

EIk

[
coskL

sinkL
− 1

kL

]
MB

= L

EI

[
kL− sinkL

(kL)2 sinkL

]
MA + L

EI

[
kL coskL− sinkL

(kL)2 sinkL

]
MB (2.320)

The moment rotation relationship can be obtained from Equations 2.319 and 2.320 by arrangingMA

andMB in terms of θA and θB as:

MA = EI

L
(siiθA + sij θB) (2.321)

MB = EI

L
(sjiθA + sjj θB) (2.322)

where

sii = sjj = kL sinkL− (kL)2 coskL

2 − 2 coskL− kL sinkL
(2.323)

sij = sji = (kL)2 − kL sinkL

2 − 2 coskL− kL sinkL
(2.324)

are referred to as the stability functions.
Equations 2.321 and 2.322 are the slope-deflection equations for a beam-column that is not sub-

jected to transverse loading and relative joint translation. It should be noted that when P approaches
zero, kL = √

(P/EI)L approaches zero, and by using L’Hospital’s rule, it can be shown that sij = 4
and sij = 2. Values for sii and sij for various values of kL are plotted as shown in Figure 2.122.

Equations 2.322 and 2.323 are valid if the following conditions are satisfied:

1. The beam is prismatic.

2. There is no relative joint displacement between the two ends of the member.

3. The member is continuous, i.e., there is no internal hinge or discontinuity in the member.

4. There is no in-span transverse loading on the member.

5. The axial force in the member is compressive.

If these conditions are not satisfied, some modifications to the slope-deflection equations are
necessary.
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FIGURE 2.122: Plot of stability functions.

Members Subjected to Sidesway

If there is a relative joint translation, 1, between the member ends, as shown in Figure 2.123,
the slope-deflection equations are modified as

MA = EI

L

[
sii

(
θA − 1

L

)
+ sij

(
θb − 1

L

)]

= EI

L

[
siiθA + sij θB − (sii + sij )

1

L

]
(2.325)

MB = EI

L

[
sij

(
θA − 1

L

)
+ sii

(
θb − 1

L

)]

= EI

L

[
sij θA + siiθB − (

sii + sij
) 1
L

]
(2.326)

FIGURE 2.123: Beam-column subjected to end moments and sidesway.
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Member with a Hinge at One End

If a hinge is present at B end of the member, the end moment there is zero, i.e.,

MB = EI

L

(
sij θA + siiθB

) = 0 (2.327)

from which
θB = − sij

sii
θA (2.328)

Upon substituting Equation 2.328 into Equation 2.325, we have

MA = EI

L

(
sii − s2

ij

sii

)
θA (2.329)

If the member is hinged at A rather than at B, Equation 2.329 is still valid provided that the
subscript A is changed to B.

Member with End Restraints

If the member ends are connected by two linear elastic springs, as in Figure 2.124, with spring
constants, RkA and RkB at the A and B ends, respectively, the end rotations of the linear spring
are MA/RkA and MB/RkB . If we denote the total end rotations at joints A and B by θA and θB ,

FIGURE 2.124: Beam-column with end springs.

respectively, then the member end rotations, with respect to its chord, will be (θA −MA/RkA) and
(θB −MB/RkB). As a result, the slope-deflection equations are modified to

MA = EI

L

[
sii

(
θA − MA

RkA

)
+ sij

(
θB − MB

RkB

)]
(2.330)

MB = EI

L

[
sij

(
θA − MA

RkA

)
+ sjj

(
θB − MB

RkB

)]
(2.331)

Solving Equations 2.330 and 2.331 simultaneously forMA andMB gives

MA = EI

LR∗

[(
sii + EIs2

ii

LRkB
− EIs2

ij

LRkB

)
θA + sij θB

]
(2.332)

MB = EI

LR∗

[
sij θA +

(
sii + EIs2

ii

LRkA
− EIs2

ij

LRkA

)
θB

]
(2.333)

where

R∗ =
(

1 + EIsii

LRkA

)(
1 + EIsii

LRkB

)
−
(
EI

L

)2 s2
ij

RkARkB
(2.334)
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In writing Equations 2.332 to 2.333, the equality sjj = sii has been used. Note that as RkA and
RkB approach infinity, Equations 2.332 and 2.333 reduce to Equations 2.321 and 2.322, respectively.

Member with Transverse Loading

For members subjected to transverse loading, the slope-deflection Equations 2.321 and 2.322
can be modified by adding an extra term for the fixed-end moment of the member.

MA = EI

L

(
siiθA + sij θB

)+MFA (2.335)

MB = EI

L

(
sij θA + sjj θB

)+MFB (2.336)

Table 2.5 give the expressions for the fixed-end moments of five commonly encountered cases of
transverse loading. Readers are referred to [14, 15] for more details.

Member with Tensile Axial Force

For members subjected to tensile force, Equations 2.321 and 2.322 can be used provided that
the stability functions are redefined as

sii = sjj = (kL)2 coshkL− kL sinhkL

2 − 2 coshkL+ kL sinhkL
(2.337)

sij = sji = kL sinhkL− (kL)2

2 − 2 coshkL+ kL sinhkL
(2.338)

Member Bent in Single Curvature with θB = −θA
For the member bent in single curvature in which θB = −θA, the slope-deflection equations

reduce to

MA = EI

L

(
sii − sij

)
θA (2.339)

MB = −MA (2.340)

Member Bent in Double Curvature with θB = θA

For the member bent in double curvature such that θB = θA, the slope-deflection equations
become

MA = EI

L

(
sii + sij

)
θA (2.341)

MB = MA (2.342)

2.12.5 Second-Order Elastic Analysis

The basis of the formulation is that the beam-column element is prismatic and initially straight.
An update-Lagrangian approach [7] is assumed. There are two methods to incorporate second-
order effects: (1) the stability function approach and (2) the geometric stiffness (or finite element)
approach. The stability function approach is based directly on the governing differential equations
of the problem as described in Section 2.12.4, whereas the stiffness approach is based on an assumed
cubic polynomial variation of the transverse displacement along the element length. Therefore, the
stability function approach is more exact in terms of representing the member stability behavior.
However, the geometric stiffness approach is easier to implement for three-dimensional analysis.
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TABLE 2.5 Beam-Column Fixed-End Moments [15]

(
u = kL/2 = L

2

√
P
EI

)
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For either of these approaches, the linearized element stiffness equations may be expressed in either
incremental or total force and displacement forms as

[K]{d} + {rf } = {r} (2.343)

where [K] is the element stiffness matrix, {d} = {d1, d2, ...., d6}T is the element nodal displacement

FIGURE 2.125: Nodal displacements and forces of a beam-column element.

vector, {rf } = {rf 1, rf 2, ....., rf 6}T is the element fixed-end force vector due to the presence of
in-span loading, and {r} = {r1, r2, ....., r6}T is the nodal force vector as shown in Figure 2.125. If
the stability function approach is employed, the stiffness matrix of a two-dimensional beam-column
element may be written as

[K] = EI

L




A
I

0 0 −A
I

0 0
2(Sii+Sij )−(kL)2

L2
Sii+Sij

L
0

−2(Sii+Sij )+(kL)2
L2

Sii+Sij
L

Sii 0
−(Sii+Sij )

L
Sij

A
I

0 0
2(Sii+Sij )−(kL)2

L2
−(Sii+Sij )

L

sym. Sii




(2.344)

where Sii and Sij are the member stiffness coefficients obtained from the elastic beam-column
stability functions [14]. These coefficient may be expressed as

Sii =



kL sin(kL)−(kL)2 cos(kL)
2−2 cos(kL)−kL sin(kL) for P < 0
(kL)2 cosh(kL)−kL sinh(kL)

2−2 cosh(kL)+kL sin(kL) for P > 0
(2.345)

Sij =



(kL)2−kL sin(kL)
2−2 cos(kL)−ρ sin(kL) for P < 0
kL sinh(kL)−(kL)2

2−2 cosh(kL)+ρ sinh(kL) for P > 0
(2.346)

where kL = L

√
P
EI

, and P is positive in compression and negative in tension.

The fixed-end force vector rf is a 6×1matrix which can be computed from the in-span loading in
the beam-column. If curvature shortening is ignored, rf 1 = rf 4 = 0, rf 3 = MFA, and rf 6 = MFB .
MFA andMFB can be obtained from Table 2.5 for different in-span loading conditions. rf 2 and rf 5
can be obtained from equilibrium of forces.
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If the axial force in the member is small, Equation 2.344 can be simplified by ignoring the higher
order terms of the power series expansion of the trigonometric functions. The resulting element
stiffness matrix becomes:

[K] = EI

L




A
I

0 0 −A
I

0 0
12
L2

6
L

0 −12
L2

6
L

4 0 −6
L

2
A
I

0 0
12

L2

−6
L

sym. 4




+ P




0 0 0 0 0 0
6

5L
1
10 0 −6

5L
1
10

2L
15 0 −1

10
−L
30

0 0 0
6

5L
−1
10

sym. 2L
15




(2.347)
The first term on the right is the first-order elastic stiffness matrix, and the second term is the

geometric stiffness matrix, which accounts for the effect of axial force on the bending stiffness of the
member. Detailed discussions on the limitation of the geometric stiffness approach vs. the stability
function approach are given in White et al. [66].

2.12.6 Modifications to Account for Plastic Hinge Effects

There are two commonly used approaches for representing plastic hinge behavior in a second-order
elastic-plastic hinge formulation [19]. The most basic approach is to model the plastic hinge behavior
as a “real hinge” for the purpose of calculating the element stiffness. The change in moment capacity
due to the change in axial force can be accommodated directly in the numerical formulation. The
change in moment is determined in the force recovery at each solution step such that, for continued
plastic loading, the new force point is positioned at the strength surface at the current value of the
axial force. A detailed description of these procedures is given by Chen and Lui [15], Chen et al. [19],
and Lee and Basu [35], among others.

Alternatively, the elastic-plastic hinge model may be formulated based on the “extending and
contracting” plastic hinge model. The plastic hinge can rotate and extend/contract for plastic loading
and axial force. The formulation can follow the force-space plasticity concept using the normality
flow rule relative to the cross-section surface strength [13]. Formal derivations of the beam-column
element based on this approach have been presented by Porter and Powell [46] and Orbison et al. [45],
among others.

2.12.7 Modification for End Connections

The moment rotation relationship of the beam-column with end connections at both ends can be
expressed as (Equations 2.332 and 2.333):

MA = EI

L

[
s∗iiθA + s∗ij θB

]
(2.348)

MB = EI

L

[
s∗ij θA + s∗jj θB

]
(2.349)

where

S∗
ii = Sii + EIS2

ii

LRkB
− EIS2

ij

LRkB[
1 + EISii

LRkA

] [
1 + EISjj

LRkB

]
− [

EI
L

]2 S2
ij

RkARkB

(2.350)

c©1999 by CRC Press LLC



S∗
jj = Sii + EIS2

ii

LRkA
− EIS2

ij

LRkA[
1 + EISii

LRkA

] [
1 + EISjj

LRkB

]
− [

EI
L

]2 S2
ij

RkARkB

(2.351)

and

S∗
ij = Sij[

1 + EISii
LRkA

] [
1 + EISjj

LRkB

]
− [

EI
L

]2 S2
ij

RkARkB

(2.352)

The member stiffness relationship can be written in terms of six degrees of freedom beam-column
element shown in Figure 2.126 as

FIGURE 2.126: Nodal displacements and forces of a beam-column with end connections.




r1
r2
r3
r4
r5
r6


 = EI

L




A
I

0 0 −A
I

0 0
S∗
ii

+2S∗
ij

+S∗
jj

−(kL)2
L2

S∗
ii

+S∗
ij

L
0

−(S∗
ii

+2S∗
ij

+S∗
jj
)+(kL)2

L2

S∗
ij

+S∗
jj

L

S∗
ii

0
−(S∗

ii
+S∗
ij
)

L
S∗
ij

A
I

0 0
S∗
ii

+2S∗
ij

+S∗
jj

−(kL)2
L2

−(S∗
ij

+S∗
jj
)

L

sym. S∗
jj







d1
d2
d3
d4
d5
d6


 (2.353)

2.12.8 Second-Order Refined Plastic Hinge Analysis

The main limitation of the conventional elastic-plastic hinge approach is that it over-predicts the
strength of columns that fail by inelastic flexural buckling. The key reason for this limitation is the
modeling of a member by a perfect elastic element between the plastic hinge locations. Furthermore,
the elastic-plastic hinge model assumes that material behavior changes abruptly from the elastic state
to the fully yielded state. The element under consideration exhibits a sudden stiffness reduction upon
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the formation of a plastic hinge. This approach, therefore, overestimates the stiffness of a member
loaded into the inelastic range [42, 64, 65, 66]. This leads to further research and development of an
alternative method called the refined plastic hinge approach. This approach is based on the following
improvements to the elastic-plastic hinge model:

1. A column tangent-modulusmodelEt is used inplaceof the elasticmodulusE to represent
the distributed plasticity along the length of a member due to axial force effects. The
member inelastic stiffness, represented by the member axial and bending rigidities EtA
and EtI , is assumed to be the function of axial load only. In other words, EtA and EtI
can be thought of as the properties of an effective core of the section, considering column
action only. The tangent modulus captures the effect of early yielding in the cross-section
due to residual stresses, which was believed to be the cause of the low strength of inelastic
column buckling. The tangent modulus approach also has been utilized in previous work
by Orbison et al. [45], Liew [38], and White et al. [66] to improve the accuracy of the
elastic-plastic hinge approach for structures in which members are subjected to large axial
forces.

2. Distributed plasticity effects associated with flexure are captured by gradually degrading
the member stiffness at the plastic hinge locations as yielding progresses under increasing
load as the cross-section strength is approached. Several models of this type have been
proposed in recent literature based on extensions to the elastic-plastic hinge approach [47]
as well as the tangent modulus inelastic hinge approach [41, 42, 66]. The rationale of
modeling stiffness degradation associated with both axial and flexural actions is that the
tangent modulus model represents the column strength behavior in the limit of pure
axial compression, and the plastic hinge stiffness degradation model represents the beam
behavior in pure bending, thus the combined effects of these two approaches should also
satisfy the cases in which the member is subjected to combined axial compression and
bending.

It has been shown that with the above two improvements, the refined plastic hinge model can be
used with sufficient accuracy to provide a quantitative assessment of a member’s performance up to
failure. Detailed descriptions of the method and discussion of results generated by the method are
given in White et al. [66] and Chen et al. [19].

2.12.9 Second-Order Plastic Zone Analysis

Plastic-zone analyses can be classified into two main types, namely 3-D shell element and 2-D beam-
column approaches. In the 3-D plastic-zone analysis, the structure is modeled using a large number
of finite 3-D shell elements, and the elastic constitutive matrix, in the usual incremental stress-strain
relations, is replaced by an elastic-plastic constitutive matrix once yielding is detected. This analysis
approach typically requires numerical integration for the evaluation of the stiffness matrix. Based
on a deformation theory of plasticity, the combined effects of normal and shear stresses may be
accounted for. The 3-D spread-of-plasticity analysis is computational intensive and best suited for
analyzing small-scale structures.

The second-approach for plastic-zone analysis is based on the use of beam-column theory, in which
the member is discretized into many beam-column segments, and the cross-section of each segment
is further subdivided into a number of fibers. Inelasticity is typically modeled by the consideration of
normal stress only. When the computed stresses at the centroid of any fibers reach the uniaxial normal
strength of the material, the fiber is considered yielded. Compatibility is treated by assuming that
full continuity is retained throughout the volume of the structure in the same manner as for elastic
range calculations. Most of the plastic-zone analysis methods developed are meant for planar (2-D)
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analysis [18, 59, 62]. Three-dimensional plastic-zone techniques are also available involving various
degrees of refinements [60, 63].

A plastic-zone analysis, which includes the spread of plasticity, residual stresses, initial geometric
imperfections, and any other significant second-order behavioral effects, is often considered to be an
exact analysis method. Therefore, when this type of analysis is employed, the checking of member
interaction equations is not required. However, in reality, some significant behavioral effects such as
joint and connection performances tend to defy precise numerical and analytical modeling. In such
cases, a simpler method of analysis that adequately captures the inelastic behavior would be sufficient
for engineering application. Second-order plastic hinge based analysis is still the preferred method
for advanced analysis of large-scale steel frames.

2.12.10 Three-Dimensional Frame Element

The two-dimensional beam-column formulation can be extended to a three-dimensional space frame
element by including additional terms due to shear force, bending moment, and torsion. The
following stiffness equation for a space frame element has been derived by Yang and Kuo [67] by
referring to Figure 2.127:

[ke]{d} + [kg]{d} = {2f } − {1f } (2.354)

where
{d}T = {d1, d2, .........., d12} (2.355)

is the displacement vector which consists of three translations and three rotations at each node, and

{if }T = {if1,
i f2, .........,

i f12} i = 1,2 (2.356)

are the force vectors which consist of the corresponding nodal forces at configurations i = 1 and
i = 2, respectively.

The physical interpretation of Equation 2.356 is as follows: By increasing the nodal forces acting on
the element from {1f } to {2f }, further deformations {d} may occur with the element, resulting in the
motion of the element from configuration associated with the forces {1f } to the new configuration
associated with {2f }. During this process of deformation, the increments in the nodal forces, i.e.,
{2f } − {1f }, will be resisted not only by the elastic actions generated by the elastic stiffness matrix
[ke] but also by the forces induced by the change in geometry as represented by the geometric stiffness
matrix [kg].

The only assumption with the incremental stiffness equation is that the strains occurring with each
incremental step should be small so that the approximations implied by the incremental constitutive
law are not violated.

The elastic stiffness matrix [Ke] for the space frame element, which has a 12 x 12 dimension, can
be derived as follows:

[k] =
[ [k1] [k2]

[k2]T [k3]
]

(2.357)

where the submatrices are

[k1] =




EA
L

0 0 0 0 0
0 12EIz

L3 0 0 0 6EIz
L2

0 0 12EIy
L3 0 −6EIy

L2 0
0 0 0 GJ

L
0 0

0 0 0 0 4EIy
L

0
0 0 0 0 0 4EIz

L




(2.358)
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FIGURE 2.127: Three-dimensional frame element: (a) nodal degrees of freedom and (b) nodal
forces.

[k2] =




−EA
L

0 0 0 0 0
0 −12EIz

L3 0 0 0 6EIz
L2

0 0 −12EIy
L3 0 −6EIy

L2 0
0 0 0 −GJ

L
0 0

0 0 6EIy
L2 0 2EIy

L
0

0 −6EIz
L2 0 0 0 2EIz

L




(2.359)

[k3] =




EA
L

0 0 0 0 0
0 12EIz

L3 0 0 0 −6EIz
L2

0 0 12EIy
L3 0 6EIy

L2 0
0 0 0 GJ

L
0 0

0 0 0 0 4EIy
L

0
0 0 0 0 0 4EIz

L




(2.360)

where Ix, Iy , and Iz are the moment of inertia about x-, y-, and z-axes; L = member length, E =
modulus of elasticity, A = cross-sectional area,G = shear modulus, and J = torsional stiffness.
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The geometric stiffness matrix for a three-dimensional space frame element can be given as follows:

[kg] =




a 0 0 0 −d −e −a 0 0 0 −n −o
b 0 d g k 0 −b 0 n −g k

c e h g 0 0 −c o −h −g
f i l 0 −d −e −f −i −l

j 0 d −g h −i p −q
m e −k −g −l q r

a 0 0 0 n o

b 0 −n g −k
c −o h g

f i l

sym. j o

m




(2.361)

where

a = −f6+f12
L2 , b = 6f7

5L , c = −f5+f11
L2 , d = f5

L
, e = f6

L
, f = f7J

AL
,

g = f10
L
, h = − f7

10, i = f6+f12
6 , j = 2f7L

15 , k = −f5+f11
6 , l = f11

L
,

m = f12
L
, n = −f7L

30 , o = −f10
2 .

Further details can be obtained from [67].

2.13 Structural Dynamic

2.13.1 Equation of Motion

The essential physical properties of a linearly elastic structural system subjected to external dynamic
loading are its mass, stiffness properties, and energy absorption capability or damping. The principle
of dynamic analysis may be illustrated by considering a simple single-story structure as shown in
Figure 2.128. The structure is subjected to a time-varying force f (t). k is the spring constant that
relates the lateral story deflection x to the story shear force, and the dash pot relates the damping
force to the velocity by a damping coefficient c. If the mass,m, is assumed to concentrate at the beam,

FIGURE 2.128: (a) One DOF structure; (b) forces applied to structures.

the structure becomes a single-degree-of-freedom (SDOF) system. The equation of motion of the
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system may be written as:
mẍ + cẋ + kx = f (t) (2.362)

Various solutions to Equation 2.362 can give an insight into the behavior of the structure under
dynamic situation.

2.13.2 Free Vibration

In this case the system is set to motion and allowed to vibrate in the absence of applied force f (t).
Letting f (t) = 0, Equation 2.362 becomes

mẍ + cẋ + kx = 0 (2.363)

Dividing Equation 2.363 by the massm, we have

ẍ + 2ξωx + ω2x = 0 (2.364)

where

2ξω = c

m
and ω2 = k

m
(2.365)

The solution to Equation 2.364 depends on whether the vibration is damped or undamped.

Case 1: Undamped Free Vibration
In this case, c = 0, and the solution to the equation of motion may be written as:

x = A sinωt + B cosωt (2.366)

where ω = √
k/m is the circular frequency. A and B are constants that can be determined by the

initial boundary conditions. In the absence of external forces and damping the system will vibrate
indefinitely in a repeated cycle of vibration with an amplitude of

X =
√
A2 + B2 (2.367)

and a natural frequency of

f = ω

2π
(2.368)

The corresponding natural period is

T = 2π

ω
= 1

f
(2.369)

The undamped free vibration motion as described by Equation 2.366 is shown in Figure 2.129.
Case 2: Damped Free Vibration

If the system is not subjected to applied force and damping is presented, the corresponding solution
becomes

x = Aexp(λ1t)+ B exp(λ2t) (2.370)

where

λ1 = ω

[
−ξ +

√
ξ2 − 1

]
(2.371)

and

λ2 = ω

[
−ξ −

√
ξ2 − 1

]
(2.372)
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FIGURE 2.129: Response of undamped free vibration.

The solution of Equation 2.370 changes its form with the value of ξ defined as

ξ = c

2
√
mk

(2.373)

If ξ2 < 1 the equation of motion becomes

x = exp(−ξωt)(A cosωdt + B sinωdt) (2.374)

where ωd is the damped angular frequency defined as

ωd =
√
(1 − ξ2)ω (2.375)

For most building structures ξ is very small (about 0.01) and thereforeωd ≈ ω. The system oscillates
about the neutral position as the amplitude decays with time t . Figure 2.130 illustrates an example
of such motion. The rate of decay is governed by the amount of damping present.

FIGURE 2.130: Response of damped free vibration.

If the damping is large, then oscillation will be prevented. This happens when ξ2 > 1 and the
behavior is referred to as overdamped. The motion of such behavior is shown in Figure 2.131.
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FIGURE 2.131: Response of free vibration with critical damping.

Damping with ξ2 = 1 is called critical damping. This is the case where minimum damping is
required to prevent oscillation and the critical damping coefficient is given as

ccr = 2
√
km (2.376)

where k andm are the stiffness and mass of the system.
The degree of damping in the structure is often expressed as a proportion of the critical damping

value. Referring to Equations 2.373 and 2.376, we have

ξ = c

ccr
(2.377)

ξ is called the critical damping ratio.

2.13.3 Forced Vibration

If a structure is subjected to a sinusoidal motion such as a ground acceleration of ẍ = F sinωf t , it
will oscillate and after some time the motion of the structure will reach a steady state. For example,
the equation of motion due to the ground acceleration (from Equation 2.364) is

ẍ + 2ξωẋ + ω2x = −F sinωf t (2.378)

The solution to the above equation consists of two parts; the complimentary solution given by
Equation 2.366 and the particular solution. If the system is damped, oscillation corresponding to
the complementary solution will decay with time. After some time, the motion will reach a steady
state and the system will vibrate at a constant amplitude and frequency. This motion, which is called
force vibration, is described by the particular solution expressed as

x = C1 sinωf t + C2 cosωf t (2.379)

It can be observed that the steady force vibration occurs at the frequency of the excited force,ωf , not
the natural frequency of the structure, ω.

Substituting Equation 2.379 into Equation 2.378, the displacement amplitude can be shown to be

X = − F

ω2

1√[{
1 − (ωf

ω

)2}2 +
(

2ξωf
ω

)2
] (2.380)

The term −F/ω2 is the static displacement caused by the force due to the inertia force. The ratio of
the response amplitude relative to the static displacement −F/ω2 is called the dynamic displacement
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amplification factor,D, given as

D = 1√[{
1 − (ωf

ω

)2}2 +
(

2ξωf
ω

)2
] (2.381)

The variation of the magnification factor with the frequency ratio ωf /ω and damping ratio ξ is
shown in Figure 2.132.

FIGURE 2.132: Variation of dynamic amplification factor with frequency ratio.

When the dynamic force is applied at a frequency much lower than the natural frequency of the
system (ωf /ω � 1), the response is quasi-static. The response is proportional to the stiffness of the
structure, and the displacement amplitude is close to the static deflection.

When the force is applied at a frequency much higher than the natural frequency (ωf /ω � 1),
the response is proportional to the mass of the structure. The displacement amplitude is less than
the static deflection (D < 1).

When the force is applied at a frequency close to the natural frequency, the displacement amplitude
increases significantly. The condition at which ωf /ω = 1 is known as resonance.

Similarly, the ratio of the acceleration response relative to the ground acceleration may be expressed
as

Da =
∣∣∣∣ ẍ + ẍg

ẍg

∣∣∣∣ =

√√√√√√√
1 +

(
2ξωf
ω

)2

[{
1 − (ωf

ω

)2}2 +
(

2ξωf
ω

)2
] (2.382)

Da is called the dynamic acceleration magnification factor.

2.13.4 Response to Suddenly Applied Load

Consider the spring-mass damper system of which a load Po is applied suddenly. The differential
equation is given by

Mẍ + cẋ + kx = Po (2.383)
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If the system is started at rest, the equation of motion is

x = Po

k

[
1 − exp(−ξωt)

{
cosωdt + ξω

ωd
sinωdt

}]
(2.384)

If the system is undamped, then ξ = 0 and ωd = ω, and we have

x = Po

k
[1 − cosωdt ] (2.385)

Themaximumdisplacement is2(Po/k) corresponding tocosωdt = −1. SincePo/k is themaximum
static displacement, the dynamic amplification factor is equal to 2. The presence of damping would
naturally reduce the dynamic amplification factor and the force in the system.

2.13.5 Response to Time-Varying Loads

Some forces and ground motions that are encountered in practice are rather complex in nature. In
general, numerical analysis is required to predict the response of such effects, and the finite element
method is one of the most common techniques to be employed in solving such problems.

The evaluation of responses due to time-varying loads can be carried out using the Piecewise Exact
Method. In using this method, the loading history is divided into small time intervals. Between these
points, it is assumed that the slope of the load curve remains constant. The entire load history is
represented by a piecewise linear curve, and the error of this approach can be minimize by reducing
the length of the time steps. Description of this procedure is given in [21].

Other techniques employed include Fourier analysis of the forcing function followed by solution
for Fourier components in the frequency domain. For random forces, random vibration theory and
spectrum analysis may be used [25, 61].

2.13.6 Multiple Degree Systems

In multiple degree systems, an independent differential equation of motion can be written for each
degree of freedom. The nodal equations of a multiple degree system consisting of n degrees of
freedom may be written as

[m]{ẍ} + [c]{ẋ} + [k]{x} = {F(t)} (2.386)

where [m] is a symmetrical n × n matrix of mass, [c] is a symmetrical n × n matrix of damping
coefficient, and {F(t)} is the force vector which is zero in the case of free vibration.

Consider a system under free vibration without damping. The general solution of Equation 2.386
is assumed in the form of


x1
x2
...

xn




=




cos(ωt − φ) 0 0 0
0 cos(ωt − φ) 0 0
...

...
...

...

0 0 0 cos(ωt − φ)





C1
C2
...

Cn




(2.387)

where angular frequencyω and phase angle φ are common to all x’s. In this assumed solution, φ and
C1, C2, Cn are the constants to be determined from the initial boundary conditions of the motion
and ω is a characteristic value (eigenvalue) of the system.
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Substituting Equation 2.387 into Equation 2.386 yields

k11 −m11ω

2 k12 −m12ω
2 · · · k1n −m1nω

2

k21 −m21ω
2 k22 −m22ω

2 · · · k2n −m2nω
2

...
...

...
...

kn1 −mn1ω
2 kn2 −mn2ω

2 · · · knn −mnnω
2





C1
C2
...

Cn




cos(ωt − φ) =




0
0
...

0



(2.388)

or [
[k] − ω2[m]

]
{C} = {0} (2.389)

where [k] and [m] are the n× nmatrices, ω2 and cos(ωt − φ) are scalars, and {C} is the amplitude
vector. For non-trivial solutions, cos(ωt − φ) 6= 0; thus, solution to Equation 2.389 requires the
determinant of

[[k] − ω2[m]] = 0. The expansion of the determinant yields a polynomial of n

degree as a function of ω2, the n roots of which are the eigenvalues ω1, ω2, ωn.
If the eigenvalueω for a normal mode is substituted in Equation 2.389, the amplitude vector {C} for

that mode can be obtained. {C1}, {C2}, {C3}, {Cn} are therefore called the eigenvectors, the absolute
values of which must be determined through initial boundary conditions. The resulting motion is a
sum of n harmonic motions, each governed by the respective natural frequency ω, written as

{x} =
n∑
i=1

{Ci} cos(ωit − φ) (2.390)

2.13.7 Distributed Mass Systems

Although many structures may be approximated by lumped mass systems, in practice all structures are
distributed mass systems consisting of an infinite number of particles. Consequently, if the motion is
repetitive, the structure has an infinite number of natural frequencies and mode shapes. The analysis
of a distributed-parameter system is entirely equivalent to that of a discrete system once the mode
shapes and frequencies have been determined because in both cases the amplitudes of the modal
response components are used as generalized coordinates in defining the response of the structure.

In principle an infinite number of these coordinates is available for a distributed-parameter system,
but in practice only a few modes, usually those of lower frequencies, will provide a significant
contribution to the overall response. Thus, the problem of a distributed-parameter system can be
converted to a discrete system form in which only a limited number of modal coordinates is used to
describe the response.

Flexural Vibration of Beams

The motion of the distributed mass system is best illustrated by a classical example of a uniform
beam with a span length L and flexural rigidity EI and a self-weight ofm per unit length, as shown
in Figure 2.133a. The beam is free to vibrate under its self-weight. From Figure 2.133b, dynamic
equilibrium of a small beam segment of length dx requires:

∂V

∂x
dx = mdx

∂2y

∂t2
(2.391)

in which
∂2y

∂x2
= M

EI
(2.392)

and

V = −∂M
∂x

,
∂V

∂x
= −∂

2M

∂x2
(2.393)

c©1999 by CRC Press LLC



FIGURE 2.133: (a) Beam in flexural vibration; (b) equilibrium of beam segment in vibration.

Substituting these equations into Equation 2.391 leads to the equation of motion of the flexural beam:

∂4y

∂x4
+ m

EI

∂2y

∂t2
= 0 (2.394)

Equation 2.394 can be solved for beams with given sets of boundary conditions. The solution consists
of a family of vibration modes with corresponding natural frequencies. Standard results are available
in Table 2.6 to compute the natural frequencies of uniform flexural beams of different supporting
conditions. Methods are also available for dynamic analysis of continuous beams [21].

Shear Vibration of Beams

Beams can deform by flexure or shear. Flexural deformation normally dominates the defor-
mation of slender beams. Shear deformation is important for short beams or in higher modes of
slender beams. Table 2.7 gives the natural frequencies of uniform beams in shear, neglecting flexural
deformation. The natural frequencies of these beams are inversely proportional to the beam length
L rather than L2, and the frequencies increase linearly with the mode number.

Combined Shear and Flexure

The transverse deformation of real beams is the sum of flexure and shear deformations. In
general, numerical solutions are required to incorporate both the shear and flexural deformation
in the prediction of natural frequency of beams. For beams with comparable shear and flexural
deformations, the following simplified formula may be used to estimate the beam’s frequency:

1

f 2
= 1

f 2
f

+ 1

f 2
s

(2.395)

where f is the fundamental frequency of the beam, and ff and fs are the fundamental frequencies
predicted by the flexure and shear beam theory [50].
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TABLE 2.6 Frequencies and Mode Shapes of Beams in Flexural Vibration
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TABLE 2.7 Frequencies and Mode Shapes of Beams in Shear Vibration

c©1999 by CRC Press LLC



Natural Frequency of Multistory Building Frames

Tall building frames often deform more in the shear mode than in flexure. The fundamental
frequencies of many multistory building frameworks can be approximated by [32, 48]

f = α

√
B

H
(2.396)

where α is approximately equal to 11
√
m/s, B is the building width in the direction of vibration, and

H is the building height. This empirical formula suggests that a shear beam model with f inversely
proportional to H is more appropriate than a flexural beam for predicting natural frequencies of
buildings.

2.13.8 Portal Frames

A portal frame consists of a cap beam rigidly connected to two vertical columns. The natural
frequencies of portal frames vibrating in the fundamental symmetric and asymmetric modes are
shown in Tables 2.8 and 2.9, respectively.

The beams in these frames are assumed to be uniform and sufficiently slender so that shear, axial,
and torsional deformations can be neglected. The method of analysis of these frames is given in [68].
The vibration is assumed to be in the plane of the frame, and the results are presented for portal
frames with pinned and fixed bases.

If the beam is rigid and the columns are slender and uniform, but not necessarily identical, then the
natural fundamental frequency of the frame can be approximated using the following formula [49]:

f = 1

2π

[
12
∑
EiIi

L3
(
M + 0.37

∑
Mi

)
]1/2

Hz (2.397)

whereM is the mass of the beam,Mi is the mass of the i-th column, andEiIi are the flexural rigidity
of the i-th column. The summation refers to the sum of all columns, and i must be greater or equal
to 2. Additional results for frames with inclined members are discussed in [11].

2.13.9 Damping

Damping is found to increase with the increasing amplitude of vibration. It arises from the dissipation
of energyduringvibration. Themechanismscontributing toenergydissipationarematerialdamping,
friction at interfaces between components, and energy dissipation due to foundation interacting with
soil, among others. Material damping arises from the friction at bolted connections and frictional
interaction between structural and non-structural elements such as partitions and cladding.

The amount of damping in a building can never be predicted precisely, and design values are
generally derived based on dynamic measurements of structures of a corresponding type. Damping
can be measured based on the rate of decay of free vibration following an impact; by spectral methods
based on analysis of response to wind loading; or by force excitation by mechanical vibrator at varying
frequency to establish the shape of the steady state resonance curve. However, these methods may
not be easily carried out if several modes of vibration close in frequency are presented.

Table 2.10 gives values of modal damping that are appropriate for use when amplitudes are low.
Higher values are appropriate at larger amplitudes where local yielding may develop, e.g., in seismic
analysis.
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TABLE 2.8 Fundamental Frequencies of Portal Frames in Asymmetrical Mode of Vibration
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TABLE 2.9 Fundamental Frequencies of Portal Frames in Asymmetrical Mode of Vibration.
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TABLE 2.10 Typical Structural Damping Values
Structural type Damping value, ξ (%)

Unclad welded steel structures 0.3
Unclad bolted steel structures 0.5

Floor, composite and non-composite 1.5-3.0
Clad buildings subjected to sidesway 1

2.13.10 Numerical Analysis

Many less complex dynamic problems can be solved without much difficulty by hand methods.
For more complex problems, such as determination of natural frequencies of complex structures,
calculation of response due to time-varying loads, and response spectrum analysis to determine
seismic forces, may require numerical analysis. The finite element method has been shown to be a
versatile technique for this purpose.

The global equations of an undamped force-vibration motion, in matrix form, may be written as

[M]{ẍ} + [K]{ẋ} = {F(t)} (2.398)

where

[K] =
n∑
i=1

[ki ] [M] =
n∑
i=1

[mi ] [F ] =
n∑
i=1

[fi ] (2.399)

are the global stiffness, mass, and force matrices, respectively. [ki], [mi], and {fi} are the stiffness,

mass, and force of the ith element, respectively. The elements are assembled using the direct stiffness
method to obtain the global equations such that intermediate continuity of displacements is satisfied
at common nodes and, in addition, interelement continuity of acceleration is also satisfied.

Equation 2.398 is the matrix equation discretized in space. To obtain solution of the equation,
discretization in time is also necessary. The general method used is called direct integration. There are
two methods for direct integration: implicit or explicit. The first, and simplest, is an explicit method
known as the central difference method [9]. The second, more sophisticated but more versatile, is an
implicit method known as the Newmark method [44]. Other integration methods are also available
in [7].

The natural frequencies are determined by solving Equation 2.398 in the absence of force F(t) as

[M]{ẍ} + [K]{x} = 0 (2.400)

The standard solution for x(t) is given by the harmonic equation in time

{x(t)} = {X}eiωt (2.401)

where {X} is the part of the nodal displacement matrix called natural modes, which are assumed to
be independent of time, i is the imaginary number, and ω is the natural frequency.

Differentiating Equation 2.401 twice with respect to time, we have

ẍ(t) = {X}
(
−ω2

)
eiωt (2.402)

Substituting of Equations 2.401 and 2.402 into Equation 2.400 yields

eiωt
(
[K] − ω2[M]

)
{X} = 0 (2.403)

Since eiωt is not zero, we obtain (
[K] − ω2[M]

)
{X} = 0 (2.404)
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Equation 2.404 is a set of linear homogeneous equations in terms of displacement mode {X}. It has
a non-trivial solution if the determinant of the coefficient matrix {X} is non-zero; that is

[K] − ω2[M] = 0 (2.405)

In general, Equation 2.405 is a set of n algebraic equations, where n is the number of degrees of
freedom associated with the problem.

2.14 Defining Terms

Arch: Principal load-carrying member curved in elevation; resistance to applied loading devel-
oped by axial thrust and bending.

Beam: A straight or curved structural member, primarily supporting loads applied at right
angles to the longitudinal axis.

Bending moment: Bending moment due to a force or a system of forces at a cross-section is
computed as the algebraic sum of all moments to one side of the section.

Built-in beam: A beam restrained at its ends against vertical movement and rotation.

Cables: Flexible structures with no moment-carrying capacity.

Cantilever: A beam restrained against movement and rotation at one end and free to deflect at
the other end.

Continuous beam: A beam that extends over several supports.

Deflection: Movement of a structure or parts of a structure under applied loads.

Element: Part of a cross-section forming a distinct part of the whole.

Grillage: Structures in which the members all lie in one plane with loads being applied in the
direction normal to this plane.

Hogging moment: Bending moment causing upward deflection in a beam.

Influence line: An influence line indicates the effect at a given section of a unit load placed at
any point on the structure.

Member: Any individual component of a structural frame.

Moment of inertia: The second moment of area of a section about the elastic neutral axis.

Plastic analysis: Analysis assuming redistribution of moments within the structure in a contin-
uous construction.

Plastic hinge: Position at which a member has developed its plastic moment of resistance.

Plastic moment: Moment capacity allowing for redistribution of stress within a cross-section.

Plastic section: A cross-section that can develop a plastic hinge with sufficient rotational ca-
pacity to allow redistribution of bending moments within the section.

Portal frame: A single-story continuous plane frame deriving its strength from bending resis-
tance and arch action.

Reaction: The load carried by each support.

Rigid frame: An indeterminate plane frame consisting of members with fixed end connections.

Sagging moment: An applied bending moment causing a sagging deflection in the beam.

Second-order analysis: Analysis considering the equilibrium formulated based on deformed
structural geometry.

Semi-rigid connection: A connection that possesses a moment capacity intermediate between
the simple and rigid connection.

Shear force: An internal force acting normal to the longitudinal axis; given by the algebraic sum
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of all forces to one side of the section chosen.

Simple beam: A beam restrained at its end only against vertical movement.

Space frame: A three-dimensional structure.

Span: The distance between the supports of a beam or a truss.

Static load: A noncyclic load that produces no dynamic effects.

Statically determinate structure: A structure in which support reactions may be found from
the equations of equilibrium.

Statically indeterminate structure: A structure in which equations of equilibrium are not suf-
ficient to determine the reactions.

Thin plate: A flat surface structure in which the thickness is small compared to the other di-
mensions.

Thin shell: A curved surface structure with a thickness relatively small compared to its other
dimensions.

Truss: A coplanar system of structural members joined at their ends to form a stable framework.
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Further Reading

The Structural Engineering Handbook by E. H. Gaylord and C. N. Gaylord provides a reference
work on structural engineering and deals with planning, design, and construction of a variety of
engineering structures.

The Finite Element Handbook by H. Kardestuncer and D. H. Norrie presents the underlying math-
ematical principles, the fundamental formulations, and both commonly used and specialized appli-
cations of the finite element method.

c©1999 by CRC Press LLC


	Structural Engineering Handbook
	Contents
	Structural Analysis
	Fundamental Principles
	Boundary Conditions
	Loads and Reactions
	Principle of Superposition
	Idealized Models

	Flexural Members
	Axial Force, Shear Force, and Bending Moment
	Relation Between Load, Shear, and Bending Moment
	Shear and Bending Moment Diagrams
	Fix-Ended Beams
	Continuous Beams
	Beam Deflection
	Curved Flexural Members

	Trusses
	Method of Joints
	Method of Sections
	Compound Trusses
	Stability and Determinacy

	Frames
	Slope Deflection Method
	Application of Slope Deflection Method to Frames
	Moment Distribution Method
	Method of Consistent Deformations

	Plates
	Bending of Thin Plates
	Boundary Conditions
	Bending of Simply Supported Rectangular Plates
	Bending of Circular Plates
	Strain Energy of Simple Plates
	Plates of Various Shapes and Boundary Conditions
	Orthotropic Plates
	Buckling of Thin Plates

	Shell
	Stress Resultants in Shell Element
	Membrane Theory of Shells of Revolution
	Spherical Dome
	Conical Shells
	Shells of Revolution Subjected to Unsymmetrical Loading
	Membrane Theory of Cylindrical Shells
	Symmetrically Loaded Circular Cylindrical Shells
	Buckling of Shells

	Influence Lines
	Influence Lines for Shear in Simple Beams
	Influence Lines for Bending Moment in Simple Beams
	Influence Lines for Trusses
	Qualitative Influence Lines
	Influence Lines for Continuous Beams

	Energy Methods in Structural Analysis
	Strain Energy Due to Uniaxial Stress
	Strain Energy in Bending
	Strain Energy in Shear
	The Energy Relations in Structural Analysis
	Unit Load Method

	Matrix Methods
	Flexibility Method
	Stiffness Method
	Element Stiffness Matrix
	Grillages
	Structure Stiffness Matrix
	Loading Between Nodes
	Semi-Rigid End Connection

	The Finite Element Method
	Basic Concept
	Basic Equations from Theory of Elasticity
	Plane Stress
	Plane Strain
	Element Shapes and Discretization
	Choice of Displacement Function
	Nodal Degrees of Freedom
	Isoparametric Elements
	Isoparametric Families of Elements
	Element Shape Functions
	Formulation of Stiffness Matrix
	Plates Subjected to In-Plane Forces
	Beam Element
	Plates in Bendings---Rectangular Element

	Inelastic Analysis
	An Overall View
	Ductility
	Redistribution of Forces
	Plastic Hinge
	Plastic Moment
	Theory of Plastic Analysis
	Equilibrium Method
	Mechanism Method
	Gable Frames
	Analysis Charts for Gable Frames
	Grillages
	Vierendeel Girders
	First-Order Hinge-By-Hinge Analysis

	Frame Stability
	Categorization of Analysis Methods
	Columns Stability
	Beam-Column Stability
	Slope Deflection Equations
	Second-Order Elastic Analysis
	Modifications to Account for Plastic Hinge Effects
	Modification for End Connections
	Second-Order Refined Plastic Hinge Analysis
	Second-Order Plastic Zone Analysis
	Three-Dimensional Frame Element

	Structural Dynamic
	Equation of Motion
	Free Vibration
	Forced Vibration
	Response to Suddenly Applied Load
	Response to Time-Varying Loads
	Multiple Degree Systems
	Distributed Mass Systems
	Portal Frames
	Damping
	Numerical Analysis

	Defining Terms



